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1. Hypotheses and General Facts on Periodic Schrodinger Operators

In this note we are interested in the spectrum near the potential maximum of a one-dimen-
sional semiclassical Schrodinger operator

(1.1) P : = P ( h ) : = -^-^.V(x).

where the potential V: IR i—> R satisfies the following hypotheses:

(Hi) V is real analytic,

(H2) V is 271-periodic,

(H3) V(x) <• 0 with equality exactly at the points 27rk, k C Z,

(H4) V"(0) < 0; without loss of generality we may assume V"(0) = -1.

It is well known that P is self adjoint with domain H^R) ^ {u ^ L^OR^U'.U" ^ LJR)} and

that P is unitarily equivalent to the direct integral
®

(1.2) J P.d^,
CO,1C

where P^u = Pu on 5T| •= {u e H^lu^x^Tr) = e^^u^x) for k = 0,1,2}. So each P^

can be viewed as an selfadjoint, semibounded, elliptic operator on a compact manifold, that

has therefore a pure point spectrum of the form

(1.3) o(P^) = {E^(Q) ^ E^(0) ^ .......} (^ [0,1[).

The so-called bands

(1.4) B^= {E^)|^ [0,1]}

are closed intervals of non-vanishing length, and build up the spectrum of P

(1.5) o(P) = U B, ,
k K

which in addition is absolutely continuous.

In one dimension two bands do not overlap except possibly at their endpoints, otherwise they

are separated by open intervals, called gaps G, . Let -c^ {[i) denote the operator of trans-

lation by -27C, acting on the two-dimensional space of solutions of (P - [i}\i = 0, def ined by

(i^ (^i)u)(x) ^ u(x + 27i). Then we have the following simple criterion:

(1.6) [i € o(P) ̂  x0i;h) := \ trace (T^)) ^ [-1J3.
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2. Former Results in Different Regions

The applicability of several methods, for instance the WKB-method, usually employed in
the study of the spectrum of a semiclassical Schrodinger operator near some level ^i, is

strongly governed by turning points, i.e. zeros x of V - ^i. We will restrict ourselves to
turning points in a complex neighbourhood of the period [0,27r]. When [i is negative and

sufficiently small, we typically have real simple turning points, that is with V'(x ) f 0.
Here a classical particle has to change its direction, while the region beyond such a tu rn ing
point is forbidden.

In view of different geometric situations, the study is roughly divided into the following
regions for the energy level [i:

(I) CQ > [L > SQ > 0.
(II) SQ ^ ̂  -sp.

(Ill) 0 > -SQ > [L > -^

where the constants s^, s, and CQ are determined by the potential.
In case (l) there do not exist any real turning points, and therefore there is no obstruction
to employ the standard WKB-method, such that we obtain that the gaps are of size 0(h°°),
while the band lengths are of order of magnitude 0(h).
In case (ill) we have at least two real turning points b , b near 0. Since further turning
points between b and b + 2n, would hinder a systematic study, we will exclude the cor-
responding ^i-regions. In other words, we assume that there is only one well I over the

period interval:
•

(2.1) 1̂  - [b^ 27r] = (x|v(x) ̂ ;x 6 [0,27i]}.

This situation has been investigated by Harrell [Ha], Simon [Si] and Outassourt [Ou]. We
only mention here that [Ou] applies the method of the interaction matrix due to Helf fer /
Sjostrand [He.Sj 1] in order to compute precise asymptotic formulas for the width B (h)

of the p-th band, concretely

(2.2) Bp(h) - ̂  ^ 2P'3 e^P^ e-5^ (l . Op(h)),

where A is determined by the potential and
b^

(2.3) S(^):=J (2[v(x) - ̂ dx
^

is the Agmon distance between the wells I and I + 2n with [L contained in the band.

Now the zone, given by case (ll), is the region under consideration in this note. Then the

situation concerning the turning points is as follows: When one is passing from [L < 0 to

[l > 0, one has a change from two real turning points? to two purely imaginary turning points

near the origin, where for [L = 0 there is exactly one double turning point at the origin.

XV - 2 -



(Clearly the same si tuation near the origin is given in the case of a double well potential V,
recently studied by Gerard/Grigis [Ge,Gr] and Horn [Ho].)

One approach for the treatment of equations with turning points is given by R.E. Langer's
method of the comparison equation. In our case (ll) this comparison equation is given by
Weber's equation

<2-4) -^-(^-^'u=o-
Here (for [L > 0) S([i] is defined by

^
(2.5) SOi):=iJ (2|V(y) -^ dy.

^
Weinstein/Keller [We,Ke] use this method in order to compute asymptotically a fundamen-
tal system of solutions of the Schrodinger equation and, with respect to which they determine

the translat ion matrix, such that they obtain the beautiful formula

(2.6) z(,;h)~ (i.e^^^cos^C^)},

where

(2.7) C(n)== f(20x - V(x)^dx.

The role of the "~" is not quite clear, but it seems that their study is only valid up to the
second order. Nevertheless following Lynn/Keller [Ly.Ke] it should be possible to carry

out the study up to the order 0(h00). Finally they estimate very briefly the size of the bands
B,(h) and the gaps G,(h) and get |B^(h)| — Gjh)| in the region [L ^ 0, which does not

coincide with our results.

3. Formula for the Trace and Theorems

Our analysis will yield
,, f i

(3.1) t0i;h) = (l + e" ̂ ^^cos {^[C(n)+ ^(logl^l - l) - n'logh] + arg[r(^ - i^')] ̂ hr(^h)}
io.

+ 0(e h ).

Explanation of this formula:
id

(
— _—-2«C_ .

* The error term 0 e h ) is due to the method and uniform with respect to [i.
* r(^i;h) is an analytic symbol of order 0 (in the sense of Sjostrand [Sj l]).

r\

(3.2) [i1 = F(^;h) = fn(^) + hfJ^i) + h f^(^) + ..... is a classical analytic symbol (c.a.s);
here ̂  = f/J^), and it can be shown that L = 0. It can be shown that

(3.3) S{[i} = -7i^+ 0(h2) and
* \i '—> C(^i) +^(log|^| - l) is analytic for [i sufficiently small.
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We st i l l have to take into account the d i f f e ren t asymptotic behaviour of the F-funct ion
in the following regions:

(i) Let be \[i\ ^ Ch for C arbi t rar i ly large, but fixed. Viewing here the F-function as a

holomorphic function, that is real on the real axis, we have arg^f-1- - i^-')") = 0{^\
I— \ 2 h / —I v h /

(ii) Let C be large enough. Then by the complex version of S t i r l ing ' s formula we have in the

region Ch <- |̂ | <; ^: arg[r(} - i^)] = ^(l - log(1^1)) + ^F(^). where F is the real

part of a function, that is holomorphic and bounded in mz ^ p.

These observations allow it to simplify the phase of the cosine such that we get the follo-
wing theorems:

Theorem I: Let C > 0 be arbitrarily large, but fixed. Then the spectrum of P in [-Ch.Ch]

for h sufficiently small is the union of disjoint closed bands. Let ^ r be defined as above
for [JL ^ [-Ch,Ch]. If [ i ' lies in a gap, then the length of this gap is given by

-2^--^2h (^[(i*.^2])^.-—.M^)}v " / J' K'<
If ^ f lies in a band, the length of this band is

^( [̂(,.̂ r]),o(^).
In particular: If 1 , 1 ' = o(h), then we see that the length of the gaps is tending to the length
of the bands.

Theorem 2: If C > 0 is large enough and h > 0 is sufficiently small, then the spectrum

of P in l _ ' ' r ^ f ~ C h j is the union of bands B, separated by open gaps G, withB.°^,(•*o($,^)))a^-[(--^)4]
for arbitrary ^ ( B,,, where [ i ' i s given as above and C([i) is defined by (2.7).
The distance between the centers of two consecutive bands is:

fl ^ pf-h- 1 f-JL „ 1 \\\ Trh
I1 ^'lo^)^ log(-yJJJCW

Remark: If C is very large, we conclude from our remarks above
-9^' l S(n)

t- u i~ \~ ~o ~1 -—i:——
a rc s in ] ( 1 + e h ) 2 1 ' ' e h-[(-- h)"1]

consequently

R I - 2h -SM L , „/ h2 __]__\\Pi ^ . x e 1 + 0 —y-——7~r~ •
. kl c^ ^ \ ^ log(-^)^

This corresponds to the size of spli t t ing in Theorem 3.1 of Gerard/Grigis , in view of the

fact that C'di) is the half of the period of the Hamilton f low on the sur face {p = (A
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Theorem 3i If C > 0 is large enough and h > 0 is sufficient^ small, then the spectrum of

P in [Ch.^rJ is the union of bands B^ separated by open gaps G. with

^^M?^))"^ '̂)4].
for arbitrary [i e G^ and with ^ f and C([i) as above.

The distance between the centers of two consecutive gaps is-

(•^(^(^i^Mr
Here we notice that C^) is the time that needs a classical particle of energy [L for passing

over the period. So in view of the behaviour of the amplitude of x([i;h) we conclude that up
to this modification the bands and the gaps exchange their roles.

D e s c r i p t i o n of the me thod
4. Reduction to a Normal Form - The Branching Model

From now on we will make an extensive use of the microlocal theory due to Sjostrand (see

[Sj 1]). The essential ideas and the terminology can be found in the appendices of [He,Sj 2]
and [Mz].

The operator P given by (l . l) is now viewed as an h - pseudodifferential operator , whose
(principal) symbol is

(4.1) P(x,i;) = ̂ 2-. V(x).

p has a non-degenerate saddle point at (0,0). So we can apply the results of appendix b of
[He.Sj 2]: There exists a real analytic canonical transformation x from a neighbourhood of

(0,0) onto a neighbourhood of (0,0) and a realvalued function ^(t), defined in a neighbour-
hood of 0 such that

(4.2) ^(0) = 0, f^O) = 1

and

(4.3) fp • p . x = PQ,

where

(4.4) Po(x,^) = x^

is the (principal) symbol of the dilation generator P,. ^ -^-(xhD -»- hDx). We also have

(4.5) dxl,Q o) = ̂  = the ^^o" by the angle f around (0,0).

Furthermore, there exist a realvalued (formal) classical analytic symbol

(4.6) F ( t ; h ) = ^ f j ( t ) h .
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defined for t in a neighbourhood of 0, and a formal unitary Fourier integral operator U as-

sociated to the canonical transformation x, mapping functions defined microlocally in some
fixed neighbourhood of (0,0) (in a sense that can be made precise by means of FBI-tranfor-
mations) to functions defined microlocally in some other fixed neighbourhood of (0,0) such
that

(4.7) U"1 F(P;h)U = Pp.

In this equation F(P;h) is defined by a functional calculus based on Cauchy's integral for-
mula such that both members may be considered as analytic pseudodifferential operators

with symbols defined in a neighbourhood of (0,0) and hence are acting on functions defined
microlocally in some fixed neighbourhood of (0,0).

Let r: u ^—> u be the complex conjugation, T. the h-Fourier-transformation and put

AQ ^ y^r. Then, since [PQ^Q^I = ^-p^ = °» w^ are able to modify the proof of (4.7) such
that we find U (as above) satisfying

(4.8) ru = UAQ.
U may be represented more explicitly by the (formal) expression

(4.9) Uu(x) = 2^ (ZTthr^^^x.y^uty) dy,

where the phase function ^ ls analytic near (0,0) and is generating x:

(4.10) x: (y,-4y(x,y))^ (x.^(x.y)). .

where by (4.5)

(4.11) 4;(x,y)=-2^/2\^^ 0((x.y)3).

(4.8) implies

(4.12) (i) y = ^(x,^(x.y)), (ii) 4^(x,y) = -^(x,4^(x,y)).

o(x,y;h) - ($o(x,y) + hc3,(x,y) + h G^[x,y} + .... is a c.a.s. with c5,JO,0) = 1, and from (4.8)
we get

(4.13) ^y) -. ^v^
l^y^-y)!' ^^.^(x.y)^ •

We will sketch now, why f, = 0. Let be P = p(x,^) + p,(x,^)h + .... a real-valued classical

analytic symbol, defined near (0,0). Assume that (0,0) is a saddle point for p with critical
value 0. In view of the definition of f(P), when f is a holomorphic function near 0, we get
for the Weyl-symbol of f(P)

(4.14) o(f(P)) = f(P(x.^;h)) . 0(h2).

Furthermore we may replace % by an h-dependent canonical t ransformation %rj , such that

(4.14) F(P(x,^,h);h) .%y=pQ+0(h2) .

XV - 6 -



We apply this to action integrals, i.e. integrals of the form I M := J^dx, where the integra-

tion is taken over some closed not necessarily real curve in q"^). Let [i and [i' be related

by (3.2), and let p^ be the left hand side of (4.14). We then have

(4.15) 2n\^ = Ip^) = Ip^) = l^') = ip (^) , Q(h2) = ̂ i^ 0(h2),

hence f^ = 0 . Transforming I M into an integral between turning points we verify (3.3).

5. Treatment of the Equation (P - (i)u = 0

We will now use the following special solutions of the equation (P,. - ^')v = 0:

(5.1) u^^tx)^-?^ ^=BoU°,

where BQ := F .̂ Any solution v € /' of (PQ - [i')v = 0 is of the form v = a u° + a u° =

= P.,.̂  + P-^. where the coefficients are related by

(5•2) C:) - v :̂:)
B is a unitary, symmetric matrix; so it is only necessary to know the matrix element b •

(5.3) b,,..'̂ -?'.^)-^^).

With respect to our microlocal framework we see that u°, w°, u° and w° are defined

microlocally in some ^'-independent neighbourhood fT of (0.0) and that they are uniform-

ly (with respect to [ L ' ] microlocally concentrated to small neighbourhoods of {(y ,0) |y <> 0} U

{ ( 0 , T i ) [ r ] ^ l R } , { ( 0 , n ) | n ^ o } u { ( y , 0 ) [ y ^ l R } , { ( y , 0 ) | y ^ o } u {(0,r])|n € 1k}, {(0,n)|^o}u

{(y*0)|y ^ IR} respectively, where these neighbourhoods may be taken arbitrarily small, if
we choose l^l sufficiently small.

Now we put

(5.4) ""'"-*0 ""'suuo

u^_ - Uw° u_^ = Uw^.

We know that these u.^ are solutions of

(5.5) (P - ^i)u = 0,

microlocally defined in a neighbourhood Q of (0,0). The equation (5.5) is valid uniformly

with respect to [i (small enough) in the sense that af ter applying an FBI-transform we get

an analogue of (5.5), valid locally and with a uniformly exponentially decreasing error. Fur-

thermore the u^, u_^ , u__ and u^_ are microlocally concentrated to small neighbourhoods

of T^Y^Y0:, Y^uy^uy0^ Y°.u y°_u y", and Y°.u Y°,u y". respectively, where

^±± = {( x^)^ P~ (0) H O | ± x ^ 0, ±^ 0} is one of the four ^characteristic segments

going out from (0,0). So the microlocal theory of [Sj 1] tells us that the u.̂  are even well-

defined as functions on an interval containing 0 in its interior, up to errors r (x,h), which
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are uniformly (w.r.t. \i] of exponential decrease in some complex neighbourhood of 0, and
satisfying (5.5) up to er rors of the same type.

Now we will study u^ more closely outside 0. Using the def in i t ion of A^,B^, (4 .8) , (5 . l )

and that y , u ^ ( x ) = u^(-x) = u°(x), we obtain

(5.6) u_^ = r u__ , u^_ = ru^.

Hence it is enough to study u and u_.

According to the defini t ion of u^ and the expression (4.9) defining U, we wri te formal ly

(5.7) u^x) - 2iei(i+x)(2.h)-^o^e^(x'y)+ll010gy).(x,y;h)e^r-y0)logy|y|- dy.

The critical point y^(x,^) of the phase y ̂  ^(x,y) + ^logy is uniquely determined and

holomorphic near XQ > 0, [L = 0, and the critical value (p(x,[i) satisfies the eiconal equation

(5.8) p ( x , ^ ) - ^ = 0 .

Near XQ > 0 we can decompose u^ into the sum of two functions microlocally concentra-

ted near y^ and y^_ respectively. Since (x,cp^(x,^)) lies on y"^, the f i rs t one is precisely

that one, we obtain by writing down the stationary phase expansion of (5.7) associated to the

critical point y^(x,^). Thus near XQ > 0 the contribution to u^ from a neighbourhood

of Y^n n^ (xo) (where n^ is the projection (x,^) •—> x) is of WKB-form:

(5.9) u,,(x) = e^^Mx^h)

with an c.a.s. b (in the (x,^i)-space) of order 0, satisfying arg b^ = -—. In the same manner

we get

(5.10) u_(x)=eF^ (x^ )d(x^h)

near y__ n n^ (-XQ) with a c.a.s. d of order 0, satisfying argdo = -|r. Here ^ is another

solution of (5.8), that (like <p) can be writ ten down explicitly.

(5.9) and (5.10) extend to y^ n n^(i ), Y0. n ^^ 1 ( I -27^) respectively, for each of the

transport equations , determining the b. (resp. d.), can be solved over the whole interior of
the corresponding well.

6. Computation of the Translation matrix

First we remark that u^ and u__ are independent in the sense that the Wronskian sat isf ies :

(<>••) Iwtu^.u..)!^.-*'"'1-'"',

uniformly on a neighbourhood of [0,27r] for every s > 0, where r\ is a continuous funct ion

with 7](0) = 0. So it makes sense to compute the t rans la t ion matr ix with respect to u , u ,

which describes the exact operator of t ransla t ion acting on the solution space of (P - [i)\i = 0
up to an exponentially small er ror .
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Since u^ and T.^ -u_^ are WKB-solutions along y++' we have there

(6.2) u^=tx^u_, with t = e'^^s^h),

where s is an analytic symbol of order 0 and d{[i) a real valued function. By a normal iza t ion

argument of [He,Sj 2] (see also [Sj 2]) we can prove that

(6.3) |t| = 1.

Fixing some x/^ C ]0,27r[, we get (for \[L\ small enough):

(6.4) argt = -^((p(xQ^) + ^(xQ-27r,^)) + argb(xQ,^i) + argd(xQ,^)

= ^(<p(xo,^) + ^(xQ-27r^)) - 5 + hr(^;h),

= ^ (C(n) ^(logl^l - 1)) - ̂  hr(^h),

where C(^t) is given by (2.7) and r(^i;h) is a c.a.s. of order 0.

Recalling (5.2) and the fact that the matrix B is symmetric, we get

(6.5) u^ = b^u^ + b^_.

So microlocally near y ^ D n (I ) we have

(6.6) u^=b^u^=b^u7;.

where in the last member we think of u as defined microlocally near y H 11" (I ).

Combining this with (6.2), we see that microlocally near y 0 IT (l )

(6.7) ^^^^Ti11--

The next work to do is to extend u further to the right, to a neighbourhood of 2n. Such

an extension should be of the form

(6.8) u^ = ti^u.^ + t^u^, = ST^U^ + ̂ u_ (near 27r).

Here the coefficient t is imposed by (6.2), and since from (6.6) ? = b , ^ t , we get by (5.2)

(6.9) , . ̂ -^-.
"ll

The same considerations give

(6.10) u_ = - b^Tr^u^ + fcn1^11-1

such that the corresponding translat ion matrix is determined as:

/j_j^_ -b,,T\
( 6 . 1 1 ) TM= ^

b^t b^t j

Taking into account the properties of B we easily find

(6.12) r(^;h) = ^trace T([I;h) = Re(^).

Inserting finally (6.4) and (5.3) we verify (3.l).
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