From Heegaard splittings to trisections; porting $3$-dimensional ideas to dimension $4$

David T Gay^{1}
^{1} Euclid Lab 160 Milledge Terrace Athens, GA 30606 Department of Mathematics University of Georgia Athens, GA 30602

Winter Braids Lecture Notes, Volume 5 (2018), Talk no. 4, 19 p.

Published online:

DOI:
10.5802/wbln.24

Author's affiliations:
David T Gay ^{1}
^{1} Euclid Lab 160 Milledge Terrace Athens, GA 30606 Department of Mathematics University of Georgia Athens, GA 30602

@article{WBLN_2018__5__A4_0, author = {David T Gay}, title = {From {Heegaard} splittings to trisections; porting $3$-dimensional ideas to dimension $4$}, journal = {Winter Braids Lecture Notes}, note = {talk:4}, pages = {1--19}, publisher = {Winter Braids School}, volume = {5}, year = {2018}, doi = {10.5802/wbln.24}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/wbln.24/} }

TY - JOUR AU - David T Gay TI - From Heegaard splittings to trisections; porting $3$-dimensional ideas to dimension $4$ JO - Winter Braids Lecture Notes N1 - talk:4 PY - 2018 SP - 1 EP - 19 VL - 5 PB - Winter Braids School UR - https://proceedings.centre-mersenne.org/articles/10.5802/wbln.24/ DO - 10.5802/wbln.24 LA - en ID - WBLN_2018__5__A4_0 ER -

%0 Journal Article %A David T Gay %T From Heegaard splittings to trisections; porting $3$-dimensional ideas to dimension $4$ %J Winter Braids Lecture Notes %Z talk:4 %D 2018 %P 1-19 %V 5 %I Winter Braids School %U https://proceedings.centre-mersenne.org/articles/10.5802/wbln.24/ %R 10.5802/wbln.24 %G en %F WBLN_2018__5__A4_0

David T Gay. From Heegaard splittings to trisections; porting $3$-dimensional ideas to dimension $4$. Winter Braids Lecture Notes, Volume 5 (2018), Talk no. 4, 19 p. doi : 10.5802/wbln.24. https://proceedings.centre-mersenne.org/articles/10.5802/wbln.24/

[1] R. İnanç Baykur; Osamu Saeki Simplified broken Lefschetz fibrations and trisections of 4-manifolds, Proceedings of the National Academy of Sciences, Volume 115 (2018) no. 43, pp. 10894-10900 http://www.pnas.org/content/115/43/10894 | arXiv | DOI | MR | Zbl

[2] Nickolas A. Castro Relative trisections of smooth 4-manifolds with boundary, Ph. D. Thesis, The University of Georgia (2016)

[3] Nickolas A. Castro; David T. Gay; Juanita Pinzón-Caicedo Diagrams for relative trisections, Pacific J. Math., Volume 294 (2018) no. 2, pp. 275-305 | DOI | MR | Zbl

[4] David Gay; Robion Kirby Trisecting 4-manifolds, Geom. Topol., Volume 20 (2016) no. 6, pp. 3097-3132 | DOI | MR | Zbl

[5] David Gay; Jeffrey Meier Doubly pointed trisection diagrams and surgery on 2-knots, 2018 | arXiv

[6] András Juhász Holomorphic discs and sutured manifolds, Algebr. Geom. Topol., Volume 6 (2006), pp. 1429-1457 | DOI | MR | Zbl

[7] Robion Kirby; Abigail Thompson A new invariant of 4-manifolds, Proceedings of the National Academy of Sciences, Volume 115 (2018) no. 43, pp. 10857-10860 http://www.pnas.org/content/115/43/10857 | arXiv | DOI | MR | Zbl

[8] Peter Lambert-Cole Bridge trisections in ${\mathrm{\u2102\mathbb{P}}}^{2}$ and the Thom conjecture, 2018 | arXiv

[9] Peter Lambert-Cole; Jeffrey Meier Bridge trisections in rational surfaces, 2018 | arXiv

[10] François Laudenbach A proof of Reidemeister-Singer’s theorem by Cerf’s methods, Ann. Fac. Sci. Toulouse Math. (6), Volume 23 (2014) no. 1, pp. 197-221 | DOI | Numdam | MR | Zbl

[11] François Laudenbach; Valentin Poénaru A note on $4$-dimensional handlebodies, Bull. Soc. Math. France, Volume 100 (1972), pp. 337-344 | DOI | Numdam | MR | Zbl

[12] Jeffrey Meier Trisecting surfaces filling transverse links (in preparation)

[13] Jeffrey Meier; Alexander Zupan Bridge trisections of knotted surfaces in ${S}^{4}$, Trans. Amer. Math. Soc., Volume 369 (2017) no. 10, pp. 7343-7386 | DOI | MR | Zbl

[14] Jeffrey Meier; Alexander Zupan Bridge trisections of knotted surfaces in 4-manifolds, Proceedings of the National Academy of Sciences, Volume 115 (2018) no. 43, pp. 10880-10886 http://www.pnas.org/content/115/43/10880 | arXiv | DOI | MR | Zbl

[15] Kurt Reidemeister Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg, Volume 9 (1933) no. 1, pp. 189-194 | DOI | MR | Zbl

[16] Adam Saltz Invariants of knotted surfaces from link homology and bridge trisections, 2018 | arXiv

[17] James Singer Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc., Volume 35 (1933) no. 1, pp. 88-111 | DOI | MR | Zbl

*Cited by Sources: *