These are the notes of a three hours minicourse given at the school Winterbraids VIII, CIRM Luminy in March 2018.
@article{WBLN_2018__5__A1_0, author = {Claire Amiot}, title = {Cluster algebras and cluster categories associated with triangulated surfaces: an introduction}, journal = {Winter Braids Lecture Notes}, note = {talk:1}, pages = {1--14}, publisher = {Winter Braids School}, volume = {5}, year = {2018}, doi = {10.5802/wbln.21}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/wbln.21/} }
TY - JOUR AU - Claire Amiot TI - Cluster algebras and cluster categories associated with triangulated surfaces: an introduction JO - Winter Braids Lecture Notes N1 - talk:1 PY - 2018 SP - 1 EP - 14 VL - 5 PB - Winter Braids School UR - https://proceedings.centre-mersenne.org/articles/10.5802/wbln.21/ DO - 10.5802/wbln.21 LA - en ID - WBLN_2018__5__A1_0 ER -
%0 Journal Article %A Claire Amiot %T Cluster algebras and cluster categories associated with triangulated surfaces: an introduction %J Winter Braids Lecture Notes %Z talk:1 %D 2018 %P 1-14 %V 5 %I Winter Braids School %U https://proceedings.centre-mersenne.org/articles/10.5802/wbln.21/ %R 10.5802/wbln.21 %G en %F WBLN_2018__5__A1_0
Claire Amiot. Cluster algebras and cluster categories associated with triangulated surfaces: an introduction. Winter Braids Lecture Notes, Volume 5 (2018), Talk no. 1, 14 p. doi : 10.5802/wbln.21. https://proceedings.centre-mersenne.org/articles/10.5802/wbln.21/
[ABCJP10] Ibrahim Assem; Thomas Brüstle; Gabrielle Charbonneau-Jodoin; Pierre-Guy Plamondon Gentle algebras arising from surface triangulations, Algebra Number Theory, Volume 4 (2010) no. 2, pp. 201-229 | DOI | MR | Zbl
[Ami09] Claire Amiot Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 6, pp. 2525-2590 | DOI | Numdam | MR | Zbl
[Ami11] Claire Amiot On generalized cluster categories, Representation of algebras and related topics (EMS Ser. Congr. Rep.), Eur. Math. Soc., Zürich, 2011, pp. 1-53 | MR | Zbl
[ASS06] Ibrahim Assem; Daniel Simson; Andrzej Skowroński Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, 65, Cambridge University Press, Cambridge, 2006 (Techniques of representation theory) | MR | Zbl
[BFZ05] Arkady Berenstein; Sergey Fomin; Andrei Zelevinsky Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., Volume 126 (2005) no. 1, pp. 1-52 | DOI | MR | Zbl
[BIRS09] A. B. Buan; O. Iyama; I. Reiten; J. Scott Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math., Volume 145 (2009) no. 4, pp. 1035-1079 | DOI | MR | Zbl
[BMR07] Aslak Bakke Buan; Robert J. Marsh; Idun Reiten Cluster-tilted algebras, Trans. Amer. Math. Soc., Volume 359 (2007) no. 1, pp. 323-332 | DOI | MR | Zbl
[BMR + 06] Aslak Bakke Buan; Robert Marsh; Markus Reineke; Idun Reiten; Gordana Todorov Tilting theory and cluster combinatorics, Adv. Math., Volume 204 (2006) no. 2, pp. 572-618 | DOI | MR | Zbl
[BR87] M. C. R. Butler; Claus Michael Ringel Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra, Volume 15 (1987) no. 1-2, pp. 145-179 | DOI | MR | Zbl
[BZ11] Thomas Brüstle; Jie Zhang On the cluster category of a marked surface without punctures, Algebra Number Theory, Volume 5 (2011) no. 4, pp. 529-566 | DOI | MR | Zbl
[BZ13] Thomas Brüstle; Jie Zhang A module-theoretic interpretation of Schiffler’s expansion formula, Comm. Algebra, Volume 41 (2013) no. 1, pp. 260-283 | DOI | MR | Zbl
[CC06] Philippe Caldero; Frédéric Chapoton Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv., Volume 81 (2006) no. 3, pp. 595-616 | DOI | MR | Zbl
[CCS06] Philippe Caldero; Frédéric Chapoton; Ralf Schiffler Quivers with relations and cluster tilted algebras, Algebr. Represent. Theory, Volume 9 (2006) no. 4, pp. 359-376 | DOI | MR | Zbl
[CIKLFP13] Giovanni Cerulli Irelli; Bernhard Keller; Daniel Labardini-Fragoso; Pierre-Guy Plamondon Linear independence of cluster monomials for skew-symmetric cluster algebras, Compos. Math., Volume 149 (2013) no. 10, pp. 1753-1764 | DOI | MR | Zbl
[CS17] Ilke Canakci; Sibylle Schroll Extensions in Jacobian algebras and cluster categories of marked surfaces, Adv. Math., Volume 313 (2017), pp. 1-49 (With an appendix by Claire Amiot) | DOI | MR | Zbl
[FG06] Vladimir Fock; Alexander Goncharov Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006) no. 103, pp. 1-211 | DOI | Numdam | Zbl
[FST08] Sergey Fomin; Michael Shapiro; Dylan Thurston Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math., Volume 201 (2008) no. 1, pp. 83-146 | DOI | MR | Zbl
[FWZ16] Sergey Fomin; Lauren Williams; Andrei Zelevinsky Introduction to Cluster Algebras. Chapters 1-3 (2016) (Preprint https://arxiv.org/abs/1608.05735)
[FWZ17] Sergey Fomin; Lauren Williams; Andrei Zelevinsky Introduction to Cluster Algebras. Chapters 4-5 (2017) (Preprint https://arxiv.org/abs/1707.07190)
[FZ02] Sergey Fomin; Andrei Zelevinsky Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl
[Gab72] Peter Gabriel Unzerlegbare Darstellungen. I, Manuscripta Math., Volume 6 (1972), p. 71-103; correction, ibid. 6 (1972), 309 | DOI | MR | Zbl
[GHKK18] Mark Gross; Paul Hacking; Sean Keel; Maxim Kontsevich Canonical bases for cluster algebras, J. Amer. Math. Soc., Volume 31 (2018) no. 2, pp. 497-608 | DOI | MR | Zbl
[GLS06] Christof Geiß; Bernard Leclerc; Jan Schröer Rigid modules over preprojective algebras, Invent. Math., Volume 165 (2006) no. 3, pp. 589-632 | DOI | MR | Zbl
[GLS13] Ch. Geiss; B. Leclerc; J. Schröer Cluster algebras in algebraic Lie theory, Transform. Groups, Volume 18 (2013) no. 1, pp. 149-178 | DOI | MR | Zbl
[Hap88] Dieter Happel Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119, Cambridge University Press, Cambridge, 1988, x+208 pages | MR | Zbl
[HL10] David Hernandez; Bernard Leclerc Cluster algebras and quantum affine algebras, Duke Math. J., Volume 154 (2010) no. 2, pp. 265-341 | DOI | MR | Zbl
[IY08] Osamu Iyama; Yuji Yoshino Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math., Volume 172 (2008) no. 1, pp. 117-168 | DOI | MR | Zbl
[Kel] Bernhard Keller https://webusers.imj-prg.fr/ bernhard.keller/quivermutation/
[Kel11a] B. Keller Cluster algebras and cluster categories, Bull. Iranian Math. Soc., Volume 37 (2011) no. 2, pp. 187-234 | MR | Zbl
[Kel11b] Bernhard Keller Algèbres amassées et applications (d’après Fomin-Zelevinsky, ), Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012–1026 (Astérisque), Société Mathématique de France, 2011 no. 339 (Exp. No. 1014, vii, 63–90) | MR | Zbl
[Kel11c] Bernhard Keller Deformed Calabi-Yau completions, J. Reine Angew. Math., Volume 654 (2011), pp. 125-180 (With an appendix by Michel Van den Bergh) | MR | Zbl
[Kel12] Bernhard Keller Cluster algebras and derived categories, Derived categories in algebraic geometry (EMS Ser. Congr. Rep.), Eur. Math. Soc., Zürich, 2012, pp. 123-183 | Zbl
[KY11] Bernhard Keller; Dong Yang Derived equivalences from mutations of quivers with potential, Adv. Math., Volume 226 (2011) no. 3, pp. 2118-2168 | DOI | MR | Zbl
[LS15] Kyungyong Lee; Ralf Schiffler Positivity for cluster algebras, Ann. of Math. (2), Volume 182 (2015) no. 1, pp. 73-125 | MR | Zbl
[MSW11] Gregg Musiker; Ralf Schiffler; Lauren Williams Positivity for cluster algebras from surfaces, Adv. Math., Volume 227 (2011) no. 6, pp. 2241-2308 | DOI | MR | Zbl
[MSW13] Gregg Musiker; Ralf Schiffler; Lauren Williams Bases for cluster algebras from surfaces, Compos. Math., Volume 149 (2013) no. 2, pp. 217-263 | DOI | MR | Zbl
[Mus02] Gregg Musiker Cluster Algebras, Somos sequences and exchange graphs (2002)
[Pal08] Yann Palu Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 6, pp. 2221-2248 | DOI | Numdam | MR | Zbl
[Pla] Pierre-Guy Plamondon Cluster characters, Homological methods, representation theory, and cluster algebras (CRM Short Courses), pp. 101-125 | MR | Zbl
[Sco06] Joshua S. Scott Grassmannians and cluster algebras, Proc. London Math. Soc. (3), Volume 92 (2006) no. 2, pp. 345-380 | DOI | MR | Zbl
Cited by Sources: