Artin groups are easily defined but most of them are poorly understood. In this survey I try to highlight precisely where the problems begin. The first part reviews the close connection between Coxeter groups and Artin groups as well as the associated topological spaces used to investigate them. The second part describes the location of the border between the Artin groups we understand at a very basic level and those that remain fundamentally mysterious. The third part highlights those collections of Artin groups (and their relatives) that are not currently understood but which we are likely to understand sometime soon.
@article{WBLN_2017__4__A1_0, author = {Jon McCammond}, title = {The mysterious geometry of {Artin} groups}, journal = {Winter Braids Lecture Notes}, note = {talk:1}, pages = {1--30}, publisher = {Winter Braids School}, volume = {4}, year = {2017}, doi = {10.5802/wbln.17}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/wbln.17/} }
TY - JOUR AU - Jon McCammond TI - The mysterious geometry of Artin groups JO - Winter Braids Lecture Notes N1 - talk:1 PY - 2017 SP - 1 EP - 30 VL - 4 PB - Winter Braids School UR - https://proceedings.centre-mersenne.org/articles/10.5802/wbln.17/ DO - 10.5802/wbln.17 LA - en ID - WBLN_2017__4__A1_0 ER -
Jon McCammond. The mysterious geometry of Artin groups. Winter Braids Lecture Notes, Volume 4 (2017), Talk no. 1, 30 p. doi : 10.5802/wbln.17. https://proceedings.centre-mersenne.org/articles/10.5802/wbln.17/
[1] Ian Agol Criteria for virtual fibering, J. Topol., Volume 1 (2008) no. 2, pp. 269-284 | DOI | MR
[2] Ian Agol The virtual Haken conjecture, Doc. Math., Volume 18 (2013), pp. 1045-1087 (With an appendix by Agol, Daniel Groves, and Jason Manning) | MR
[3] Bruce N. Allison; Saeid Azam; Stephen Berman; Yun Gao; Arturo Pianzola Extended affine Lie algebras and their root systems, Mem. Amer. Math. Soc., Volume 126 (1997) no. 603, x+122 pages | DOI | MR
[4] K. I. Appel; P. E. and Schupp Artin groups and infinite Coxeter groups, Invent. Math., Volume 72 (1983) no. 2, pp. 201-220 | DOI | MR
[5] Mladen Bestvina; Noel Brady Morse theory and finiteness properties of groups, Invent. Math., Volume 129 (1997) no. 3, pp. 445-470 | DOI | MR
[6] Stephen J. Bigelow Braid groups are linear, J. Amer. Math. Soc., Volume 14 (2001) no. 2, pp. 471-486 | DOI | MR
[7] Anders Björner; Francesco Brenti Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005, xiv+363 pages | MR
[8] Ryan Blair; Ryan Ottman A decomposition theorem for higher rank Coxeter groups, Comm. Algebra, Volume 41 (2013) no. 7, pp. 2508-2518 | DOI | MR
[9] Martin R. Bridson; André Haefliger Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999, xxii+643 pages | MR
[10] Egbert Brieskorn; Kyoji Saito Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271 | MR
[11] Filippo Callegaro; Davide Moroni; Mario Salvetti Cohomology of affine Artin groups and applications, Trans. Amer. Math. Soc., Volume 360 (2008) no. 8, pp. 4169-4188 | DOI | MR
[12] Filippo Callegaro; Davide Moroni; Mario Salvetti Cohomology of Artin groups of type and applications, Groups, homotopy and configuration spaces (Geom. Topol. Monogr.), Volume 13, Geom. Topol. Publ., Coventry, 2008, pp. 85-104 | DOI | MR
[13] Filippo Callegaro; Davide Moroni; Mario Salvetti The problem for the affine Artin group of type and its cohomology, J. Eur. Math. Soc. (JEMS), Volume 12 (2010) no. 1, pp. 1-22 | DOI | MR
[14] Ruth Charney The Deligne complex for the four-strand braid group, Trans. Amer. Math. Soc., Volume 356 (2004) no. 10, pp. 3881-3897 | DOI | MR
[15] Ruth Charney; Luis Paris Convexity of parabolic subgroups in Artin groups, Bull. Lond. Math. Soc., Volume 46 (2014) no. 6, pp. 1248-1255 | DOI | MR
[16] Andrew Chermak Locally non-spherical Artin groups, J. Algebra, Volume 200 (1998) no. 1, pp. 56-98 | DOI | MR
[17] Arjeh M. Cohen Finite complex reflection groups, Ann. Sci. École Norm. Sup. (4), Volume 9 (1976) no. 3, pp. 379-436 | MR
[18] Arjeh M. Cohen; David B. Wales Linearity of Artin groups of finite type, Israel J. Math., Volume 131 (2002), pp. 101-123 | DOI | MR
[19] Ben Coté; Jon McCammond A complex euclidean reflection group with an elegant complement complex (arXiv:1707.06624 [math.GR])
[20] John Crisp Injective maps between Artin groups, Geometric group theory down under (Canberra, 1996), de Gruyter, Berlin, 1999, pp. 119-137 | MR
[21] John Crisp; Luis Paris The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group, Invent. Math., Volume 145 (2001) no. 1, pp. 19-36 | DOI | MR
[22] Michael W. Davis Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. (2), Volume 117 (1983) no. 2, pp. 293-324 | DOI | MR
[23] Michael W. Davis The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series, 32, Princeton University Press, Princeton, NJ, 2008, xvi+584 pages | MR
[24] Pierre Deligne Les immeubles des groupes de tresses généralisés, Invent. Math., Volume 17 (1972), pp. 273-302 | MR
[25] François Digne On the linearity of Artin braid groups, J. Algebra, Volume 268 (2003) no. 1, pp. 39-57 | DOI | MR
[26] Eddy Godelle; Luis Paris Basic questions on Artin-Tits groups, Configuration spaces (CRM Series), Volume 14, Ed. Norm., Pisa, 2012, pp. 299-311 | DOI | MR
[27] Victor Goryunov; Show Han Man The complex crystallographic groups and symmetries of , Singularity theory and its applications (Adv. Stud. Pure Math.), Volume 43, Math. Soc. Japan, Tokyo, 2006, pp. 55-72 | MR
[28] Jingyin Huang; Kasia Jankiewicz; Piotr Przytycki Cocompactly cubulated 2-dimensional Artin groups, Comment. Math. Helv., Volume 91 (2016) no. 3, pp. 519-542 | DOI | MR
[29] James E. Humphreys Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990, xii+204 pages | MR
[30] Daan Krammer The braid group is linear, Invent. Math., Volume 142 (2000) no. 3, pp. 451-486 | DOI | MR
[31] Daan Krammer Braid groups are linear, Ann. of Math. (2), Volume 155 (2002) no. 1, pp. 131-156 | DOI | MR
[32] Gustav I. Lehrer; Donald E. Taylor Unitary reflection groups, Australian Mathematical Society Lecture Series, 20, Cambridge University Press, Cambridge, 2009, viii+294 pages | MR
[33] Jon McCammond Combinatorial descriptions of multi-vertex 2-complexes, Illinois J. Math., Volume 54 (2010) no. 1, pp. 137-154 http://projecteuclid.org/euclid.ijm/1299679742 | MR
[34] Jon McCammond The structure of Euclidean Artin groups, London Mathematical Society Lecture Note Series (2017), 82Ð114 pages | DOI
[35] Jon McCammond; Robert Sulway Artin groups of Euclidean type, Inventiones mathematicae, Volume 210 (2017) no. 1, pp. 231-282 | DOI
[36] Luis Paris Artin monoids inject in their groups, Comment. Math. Helv., Volume 77 (2002) no. 3, pp. 609-637 | MR
[37] Luis Paris conjecture for Artin groups, Ann. Fac. Sci. Toulouse Math. (6), Volume 23 (2014) no. 2, pp. 361-415 | DOI | MR
[38] Luis Paris Lectures on Artin groups and the conjecture, Groups of exceptional type, Coxeter groups and related geometries (Springer Proc. Math. Stat.), Volume 82, Springer, New Delhi, 2014, pp. 239-257 | DOI | MR
[39] V. L. Popov Discrete complex reflection groups, Communications of the Mathematical Institute, Rijksuniversiteit Utrecht, 15, Rijksuniversiteit Utrecht, Mathematical Institute, Utrecht, 1982, 89 pages | MR
[40] Kyoji Saito Einfach-elliptische Singularitäten, Invent. Math., Volume 23 (1974), pp. 289-325 | DOI | MR
[41] Kyoji Saito Extended affine root systems. I. Coxeter transformations, Publ. Res. Inst. Math. Sci., Volume 21 (1985) no. 1, pp. 75-179 | DOI | MR
[42] Kyoji Saito Extended affine root systems. II. Flat invariants, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 1, pp. 15-78 | DOI | MR
[43] Kyoji Saito Extended affine root systems. V. Elliptic eta-products and their Dirichlet series, Proceedings on Moonshine and related topics (Montréal, QC, 1999) (CRM Proc. Lecture Notes), Volume 30 (2001), pp. 185-222 | MR
[44] Kyoji Saito; Tadayoshi Takebayashi Extended affine root systems. III. Elliptic Weyl groups, Publ. Res. Inst. Math. Sci., Volume 33 (1997) no. 2, pp. 301-329 | DOI | MR
[45] Kyoji Saito; Daigo Yoshii Extended affine root system. IV. Simply-laced elliptic Lie algebras, Publ. Res. Inst. Math. Sci., Volume 36 (2000) no. 3, pp. 385-421 | DOI | MR
[46] G. C. Shephard; J. A. Todd Finite unitary reflection groups, Canadian J. Math., Volume 6 (1954), pp. 274-304 | MR
[47] Jacques Tits Œuvres/Collected works. Vol. I, II, III, IV, Heritage of European Mathematics, European Mathematical Society (EMS), Zürich, 2013, Vol.I: xcviii+879 pp.; II: xii+952 pp.; III: xii+986 pp.; IV: xii+1020 pages (Edited by Francis Buekenhout, Bernhard Matthias Mühlherr, Jean-Pierre Tignol and Hendrik Van Maldeghem) | MR
[48] Harm van der Lek The homotopy type of complex hyperplane complements, Ph. D. Thesis, University of Nijmegen (1983)
[49] Daniel T. Wise From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, CBMS Regional Conference Series in Mathematics, 117, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2012, xiv+141 pages | DOI | MR
Cited by Sources: