Given a closed oriented manifold or more generally a group homology class, we introduce the spherical Plateau problem, which is a variational problem corresponding to a topological invariant called the spherical volume. In principle, its solutions should be realized by minimal surfaces in quotients of spheres. We explain that in many geometrically interesting cases, those solutions are essentially unique. We start with a review of the Ambrosio-Kirchheim theory of metric currents, and the barycenter map method developed by Besson-Courtois-Gallot. Then, we outline the following applications:
- the intrinsic uniqueness of spherical Plateau solutions for negatively curved, locally symmetric, closed oriented manifolds,
- the intrinsic uniqueness of spherical Plateau solutions for all 3-dimensional closed oriented manifolds,
- the construction of higher-dimensional analogues of hyperbolic Dehn fillings.
We also propose some open questions.
@article{TSG_2021-2022__37__177_0, author = {Antoine Song}, title = {Spherical volume and spherical {Plateau} problem}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {177--234}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {37}, year = {2021-2022}, doi = {10.5802/tsg.386}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.386/} }
TY - JOUR AU - Antoine Song TI - Spherical volume and spherical Plateau problem JO - Séminaire de théorie spectrale et géométrie PY - 2021-2022 SP - 177 EP - 234 VL - 37 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.386/ DO - 10.5802/tsg.386 LA - en ID - TSG_2021-2022__37__177_0 ER -
%0 Journal Article %A Antoine Song %T Spherical volume and spherical Plateau problem %J Séminaire de théorie spectrale et géométrie %D 2021-2022 %P 177-234 %V 37 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.386/ %R 10.5802/tsg.386 %G en %F TSG_2021-2022__37__177_0
Antoine Song. Spherical volume and spherical Plateau problem. Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 177-234. doi : 10.5802/tsg.386. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.386/
[1] Almgren’s big regularity paper, World Scientific Monograph Series in Mathematics, 1, World Scientific, 2000 (-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2, with a preface by Jean E. Taylor and Vladimir Scheffer) | MR | Zbl
[2] The regularity theory of area-minimizing integral currents [after Almgren–De Lellis–Spadaro], Séminaire Bourbaki. Volume 2014/2015. Exposés 1089–1103 (Astérisque), Volume 380, Société Mathématique de France, 2016, pp. 139-169 (Exp. 1093) | MR | Zbl
[3] Partial regularity for mass-minimizing currents in Hilbert spaces, J. Reine Angew. Math., Volume 734 (2018), pp. 99-144 | DOI | MR | Zbl
[4] Currents in metric spaces, Acta Math., Volume 185 (2000) no. 1, pp. 1-80 | DOI | MR | Zbl
[5] Rectifiable sets in metric and Banach spaces, Math. Ann., Volume 318 (2000) no. 3, pp. 527-555 | DOI | MR | Zbl
[6] Compactness results for normal currents and the Plateau problem in dual Banach spaces, Proc. Lond. Math. Soc., Volume 106 (2013) no. 5, pp. 1121-1142 | DOI | MR | Zbl
[7] Dehn filling and Einstein metrics in higher dimensions, J. Differ. Geom., Volume 73 (2006) no. 2, pp. 219-261 | DOI | MR | Zbl
[8] Volume entropy semi-norm and systolic volume semi-norm, J. Eur. Math. Soc. (JEMS), Volume 26 (2024) no. 11, pp. 4393-4439 | DOI | MR | Zbl
[9] Topologie des systoles unidimensionnelles, Enseign. Math., Volume 52 (2006) no. 1-2, pp. 109-142 | MR | Zbl
[10] Construction of Einstein metrics by generalized Dehn filling, J. Eur. Math. Soc., Volume 14 (2012) no. 3, pp. 887-909 | DOI | MR | Zbl
[11] Filling minimality and Lipschitz-volume rigidity of convex bodies among integral current spaces (2023) | arXiv
[12] Kazhdan’s property, New Mathematical Monographs, 11, Cambridge university press, 2008 | DOI | Zbl
[13] Differentiable rigidity under Ricci curvature lower bound, Duke Math. J., Volume 161 (2012) no. 1, pp. 29-67 | DOI | MR | Zbl
[14] Volume et entropie minimale des espaces localement symétriques, Invent. Math., Volume 103 (1991) no. 2, pp. 417-445 | DOI | MR | Zbl
[15] Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal., Volume 5 (1995) no. 5, pp. 731-799 | DOI | MR | Zbl
[16] Minimal entropy and Mostow’s rigidity theorems, Ergodic Theory Dyn. Syst., Volume 16 (1996) no. 4, pp. 623-649 | DOI | MR | Zbl
[17] Spherical space forms and Dehn filling, Topology, Volume 35 (1996) no. 3, pp. 809-833 | DOI | MR | Zbl
[18] Homological invariance for asymptotic invariants and systolic inequalities, Geom. Funct. Anal., Volume 18 (2008) no. 4, pp. 1087-1117 | DOI | MR | Zbl
[19] A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, 2001 | MR | Zbl
[20] Characterizing candidates for Cannon’s conjecture from geometric measure theory, Bull. Lond. Math. Soc., Volume 55 (2023) no. 4, pp. 1718-1725 | DOI | MR | Zbl
[21] Some recent applications of the barycenter method in geometry (2002) | arXiv
[22] The regularity of minimal surfaces in higher codimension, Current developments in mathematics 2014, International Press, 2016, pp. 153-229 | DOI | MR | Zbl
[23] Regularity of area minimizing currents I: gradient estimates, Geom. Funct. Anal., Volume 24 (2014) no. 6, pp. 1831-1884 | DOI | MR | Zbl
[24] Approximation by polyhedral chains in Banach spaces, Z. Anal. Anwend., Volume 33 (2014) no. 3, pp. 311-334 | DOI | MR | Zbl
[25] Rigidity of mass-preserving -Lipschitz maps from integral current spaces into (2023) | arXiv
[26] Geometric group theory, Colloquium Publications. American Mathematical Society, 63, American Mathematical Society, 2018 (With an appendix by Bogdan Nica) | DOI | MR | Zbl
[27] Geometric measure theory, Grundlehren der Mathematischen Wissenschaften, 153, Springer, 1969 | MR | Zbl
[28] Real flat chains, cochains and variational problems, Indiana Univ. Math. J., Volume 24 (1974) no. 4, pp. 351-407 | DOI | MR | Zbl
[29] Normal and integral currents, Ann. Math., Volume 72 (1960) no. 3, pp. 458-520 | DOI | Zbl
[30] and fillings of hyperbolic manifolds, J. Differ. Geom., Volume 85 (2010) no. 2, pp. 229-269 | DOI | MR | Zbl
[31] Simplicial volume and fillings of hyperbolic manifolds, Algebr. Geom. Topol., Volume 11 (2011) no. 4, pp. 2237-2264 | DOI | MR | Zbl
[32] Hyperbolic manifolds according to Thurston and Jørgensen, Séminaire Bourbaki vol. 1979/80 Exposés 543–560 (Lecture Notes in Mathematics), Springer, 1981, pp. 40-53 | DOI | MR | Zbl
[33] Volume and bounded cohomology, Publ. Math., Inst. Hautes Étud. Sci., Volume 56 (1982), pp. 5-99 | MR | Zbl
[34] Dehn filling in relatively hyperbolic groups, Isr. J. Math., Volume 168 (2008), pp. 317-429 | DOI | MR | Zbl
[35] The spectrum of simplicial volume, Invent. Math., Volume 223 (2021) no. 1, pp. 103-148 | DOI | MR | Zbl
[36] Remarks on manifolds with two-sided curvature bounds, Anal. Geom. Metr. Spaces, Volume 9 (2021) no. 1, pp. 53-64 | DOI | MR | Zbl
[37] Notes on Perelman’s papers, Geom. Topol., Volume 12 (2008) no. 5, pp. 2587-2855 | DOI | MR | Zbl
[38] Entropies, volumes, and Einstein metrics, Global differential geometry (Springer Proceedings in Mathematics), Volume 17, Springer, 2011, pp. 39-54 | DOI | MR | Zbl
[39] Local currents in metric spaces, J. Geom. Anal., Volume 21 (2011) no. 3, pp. 683-742 | DOI | MR | Zbl
[40] The stable homology of a flat torus, Math. Scand., Volume 36 (1975) no. 1, pp. 49-73 | DOI | MR | Zbl
[41] Homologically area-minimizing surfaces that cannot be calibrated (2023) | arXiv
[42] The spherical Plateau problem for group homology and Cannon’s conjecture (2023) (Master’s Thesis, ETH Zurich, Switzerland) | DOI
[43] Area-minimizing currents bounded by higher multiples of curves, Rend. Circ. Mat. Palermo, Volume 33 (1984), pp. 37-46 | DOI | MR | Zbl
[44] The geometrization conjecture, Clay Mathematics Monographs, 5, American Mathematical Society; Clay Mathematics Institute, 2014 | MR | Zbl
[45] Peripheral fillings of relatively hyperbolic groups, Invent. Math., Volume 167 (2007) no. 2, pp. 295-326 | DOI | MR | Zbl
[46] Minimal Entropy of -manifolds, Ph. D. Thesis, University of Rome, Sapienza, Italy (2019) (https://arxiv.org/abs/1902.09190)
[47] Singular (Lipschitz) homology and homology of integral currents (2009) | arXiv
[48] The Cayley hyperbolic space and volume entropy rigidity (2022)
[49] Minimal entropy and simplicial volume, Manuscr. Math., Volume 99 (1999) no. 4, pp. 541-560 | DOI | MR | Zbl
[50] The spherical Plateau problem for group homology (2022) | arXiv
[51] Entropy and stability of hyperbolic manifolds (2023) | arXiv
[52] Intrinsic flat Arzela–Ascoli theorems, Commun. Anal. Geom., Volume 26 (2018) no. 6, pp. 1317-1373 | DOI | MR | Zbl
[53] The intrinsic flat distance between Riemannian manifolds and other integral current spaces, J. Differ. Geom., Volume 87 (2011) no. 1, pp. 117-199 | DOI | MR | Zbl
[54] Minimal volume and minimal entropy, Ph. D. Thesis, Bonn University, Germany (2001)
[55] Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, 35, Princeton University Press, 1997 (edited by Silvio Levy) | DOI | MR | Zbl
[56] Topics on totally discontinuous groups, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970) (Pure and Applied Mathematics), Volume 8, Marcel Dekker, 1972, pp. 459-487 | MR | Zbl
[57] Flat convergence for integral currents in metric spaces, Calc. Var. Partial Differ. Equ., Volume 28 (2007) no. 2, pp. 139-160 | DOI | MR | Zbl
[58] Compactness for manifolds and integral currents with bounded diameter and volume, Calc. Var. Partial Differ. Equ., Volume 40 (2011) no. 3-4, pp. 423-448 | DOI | MR | Zbl
[59] Plateau’s problem for integral currents in locally non-compact metric spaces, Adv. Calc. Var., Volume 7 (2014) no. 2, pp. 227-240 | DOI | MR | Zbl
[60] The least area bounded by multiples of a curve, Proc. Am. Math. Soc., Volume 90 (1984) no. 2, pp. 230-232 | DOI | MR | Zbl
[61] Lipschitz rigidigy of Lipschitz manifolds among integral current spaces (2023) | arXiv
Cité par Sources :