Spherical volume and spherical Plateau problem
Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 177-234.

Given a closed oriented manifold or more generally a group homology class, we introduce the spherical Plateau problem, which is a variational problem corresponding to a topological invariant called the spherical volume. In principle, its solutions should be realized by minimal surfaces in quotients of spheres. We explain that in many geometrically interesting cases, those solutions are essentially unique. We start with a review of the Ambrosio-Kirchheim theory of metric currents, and the barycenter map method developed by Besson-Courtois-Gallot. Then, we outline the following applications:

  • the intrinsic uniqueness of spherical Plateau solutions for negatively curved, locally symmetric, closed oriented manifolds,
  • the intrinsic uniqueness of spherical Plateau solutions for all 3-dimensional closed oriented manifolds,
  • the construction of higher-dimensional analogues of hyperbolic Dehn fillings.

We also propose some open questions.

Publié le :
DOI : 10.5802/tsg.386

Antoine Song 1

1 California Institute of Technology 177 Linde Hall, #1200 E. California Blvd., Pasadena, CA 91125 (USA)
@article{TSG_2021-2022__37__177_0,
     author = {Antoine Song},
     title = {Spherical volume and spherical {Plateau} problem},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {177--234},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {37},
     year = {2021-2022},
     doi = {10.5802/tsg.386},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.386/}
}
TY  - JOUR
AU  - Antoine Song
TI  - Spherical volume and spherical Plateau problem
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2021-2022
SP  - 177
EP  - 234
VL  - 37
PB  - Institut Fourier
PP  - Grenoble
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.386/
DO  - 10.5802/tsg.386
LA  - en
ID  - TSG_2021-2022__37__177_0
ER  - 
%0 Journal Article
%A Antoine Song
%T Spherical volume and spherical Plateau problem
%J Séminaire de théorie spectrale et géométrie
%D 2021-2022
%P 177-234
%V 37
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.386/
%R 10.5802/tsg.386
%G en
%F TSG_2021-2022__37__177_0
Antoine Song. Spherical volume and spherical Plateau problem. Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 177-234. doi : 10.5802/tsg.386. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.386/

[1] Frederick J. jun. Almgren Almgren’s big regularity paper, World Scientific Monograph Series in Mathematics, 1, World Scientific, 2000 (Q-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2, with a preface by Jean E. Taylor and Vladimir Scheffer) | MR | Zbl

[2] Luigi Ambrosio The regularity theory of area-minimizing integral currents [after Almgren–De Lellis–Spadaro], Séminaire Bourbaki. Volume 2014/2015. Exposés 1089–1103 (Astérisque), Volume 380, Société Mathématique de France, 2016, pp. 139-169 (Exp. 1093) | MR | Zbl

[3] Luigi Ambrosio; Camillo De Lellis; Thomas Schmidt Partial regularity for mass-minimizing currents in Hilbert spaces, J. Reine Angew. Math., Volume 734 (2018), pp. 99-144 | DOI | MR | Zbl

[4] Luigi Ambrosio; Bernd Kirchheim Currents in metric spaces, Acta Math., Volume 185 (2000) no. 1, pp. 1-80 | DOI | MR | Zbl

[5] Luigi Ambrosio; Bernd Kirchheim Rectifiable sets in metric and Banach spaces, Math. Ann., Volume 318 (2000) no. 3, pp. 527-555 | DOI | MR | Zbl

[6] Luigi Ambrosio; Thomas Schmidt Compactness results for normal currents and the Plateau problem in dual Banach spaces, Proc. Lond. Math. Soc., Volume 106 (2013) no. 5, pp. 1121-1142 | DOI | MR | Zbl

[7] Michael T. Anderson Dehn filling and Einstein metrics in higher dimensions, J. Differ. Geom., Volume 73 (2006) no. 2, pp. 219-261 | DOI | MR | Zbl

[8] Ivan Babenko; Stéphane Sabourau Volume entropy semi-norm and systolic volume semi-norm, J. Eur. Math. Soc. (JEMS), Volume 26 (2024) no. 11, pp. 4393-4439 | DOI | MR | Zbl

[9] Ivan K. Babenko Topologie des systoles unidimensionnelles, Enseign. Math., Volume 52 (2006) no. 1-2, pp. 109-142 | MR | Zbl

[10] Richard H. Bamler Construction of Einstein metrics by generalized Dehn filling, J. Eur. Math. Soc., Volume 14 (2012) no. 3, pp. 887-909 | DOI | MR | Zbl

[11] Giuliano Basso; Paul Creutz; Elefterios Soultanis Filling minimality and Lipschitz-volume rigidity of convex bodies among integral current spaces (2023) | arXiv

[12] Bachir Bekka; Pierre de La Harpe; Alain Valette Kazhdan’s property, New Mathematical Monographs, 11, Cambridge university press, 2008 | DOI | Zbl

[13] Laurent Bessières; Gérard Besson; Gilles Courtois; Sylvestre Gallot Differentiable rigidity under Ricci curvature lower bound, Duke Math. J., Volume 161 (2012) no. 1, pp. 29-67 | DOI | MR | Zbl

[14] Gérard Besson; Gilles Courtois; Sylvestre Gallot Volume et entropie minimale des espaces localement symétriques, Invent. Math., Volume 103 (1991) no. 2, pp. 417-445 | DOI | MR | Zbl

[15] Gérard Besson; Gilles Courtois; Sylvestre Gallot Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal., Volume 5 (1995) no. 5, pp. 731-799 | DOI | MR | Zbl

[16] Gérard Besson; Gilles Courtois; Sylvestre Gallot Minimal entropy and Mostow’s rigidity theorems, Ergodic Theory Dyn. Syst., Volume 16 (1996) no. 4, pp. 623-649 | DOI | MR | Zbl

[17] Steven A. Bleiler; Craig D. Hodgson Spherical space forms and Dehn filling, Topology, Volume 35 (1996) no. 3, pp. 809-833 | DOI | MR | Zbl

[18] Michael Brunnbauer Homological invariance for asymptotic invariants and systolic inequalities, Geom. Funct. Anal., Volume 18 (2008) no. 4, pp. 1087-1117 | DOI | MR | Zbl

[19] Dmitri Burago; Yuri Burago; Sergei Ivanov A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, 2001 | MR | Zbl

[20] Tamunonye Cheetham-West; Alexander Nolte Characterizing candidates for Cannon’s conjecture from geometric measure theory, Bull. Lond. Math. Soc., Volume 55 (2023) no. 4, pp. 1718-1725 | DOI | MR | Zbl

[21] Christopher Connell; Benson Farb Some recent applications of the barycenter method in geometry (2002) | arXiv

[22] Camillo De Lellis The regularity of minimal surfaces in higher codimension, Current developments in mathematics 2014, International Press, 2016, pp. 153-229 | DOI | MR | Zbl

[23] Camillo De Lellis; Emanuele Spadaro Regularity of area minimizing currents I: gradient L p estimates, Geom. Funct. Anal., Volume 24 (2014) no. 6, pp. 1831-1884 | DOI | MR | Zbl

[24] Thierry De Pauw Approximation by polyhedral G chains in Banach spaces, Z. Anal. Anwend., Volume 33 (2014) no. 3, pp. 311-334 | DOI | MR | Zbl

[25] Giacomo Del Nin; Raquel Perales Rigidity of mass-preserving 1-Lipschitz maps from integral current spaces into R n (2023) | arXiv

[26] Cornelia Druţu; Michael Kapovich Geometric group theory, Colloquium Publications. American Mathematical Society, 63, American Mathematical Society, 2018 (With an appendix by Bogdan Nica) | DOI | MR | Zbl

[27] Herbert Federer Geometric measure theory, Grundlehren der Mathematischen Wissenschaften, 153, Springer, 1969 | MR | Zbl

[28] Herbert Federer Real flat chains, cochains and variational problems, Indiana Univ. Math. J., Volume 24 (1974) no. 4, pp. 351-407 | DOI | MR | Zbl

[29] Herbert Federer; Wendell H. Fleming Normal and integral currents, Ann. Math., Volume 72 (1960) no. 3, pp. 458-520 | DOI | Zbl

[30] Koji Fujiwara; Jason F. Manning CAT(0) and CAT (-1) fillings of hyperbolic manifolds, J. Differ. Geom., Volume 85 (2010) no. 2, pp. 229-269 | DOI | MR | Zbl

[31] Koji Fujiwara; Jason F. Manning Simplicial volume and fillings of hyperbolic manifolds, Algebr. Geom. Topol., Volume 11 (2011) no. 4, pp. 2237-2264 | DOI | MR | Zbl

[32] Michael Gromov Hyperbolic manifolds according to Thurston and Jørgensen, Séminaire Bourbaki vol. 1979/80 Exposés 543–560 (Lecture Notes in Mathematics), Springer, 1981, pp. 40-53 | DOI | MR | Zbl

[33] Michael Gromov Volume and bounded cohomology, Publ. Math., Inst. Hautes Étud. Sci., Volume 56 (1982), pp. 5-99 | MR | Zbl

[34] Daniel Groves; Jason F. Manning Dehn filling in relatively hyperbolic groups, Isr. J. Math., Volume 168 (2008), pp. 317-429 | DOI | MR | Zbl

[35] Nicolaus Heuer; Clara Löh The spectrum of simplicial volume, Invent. Math., Volume 223 (2021) no. 1, pp. 103-148 | DOI | MR | Zbl

[36] Vitali Kapovitch; Alexander Lytchak Remarks on manifolds with two-sided curvature bounds, Anal. Geom. Metr. Spaces, Volume 9 (2021) no. 1, pp. 53-64 | DOI | MR | Zbl

[37] Bruce Kleiner; John Lott Notes on Perelman’s papers, Geom. Topol., Volume 12 (2008) no. 5, pp. 2587-2855 | DOI | MR | Zbl

[38] Dieter Kotschick Entropies, volumes, and Einstein metrics, Global differential geometry (Springer Proceedings in Mathematics), Volume 17, Springer, 2011, pp. 39-54 | DOI | MR | Zbl

[39] Urs Lang Local currents in metric spaces, J. Geom. Anal., Volume 21 (2011) no. 3, pp. 683-742 | DOI | MR | Zbl

[40] H. Blaine Lawson The stable homology of a flat torus, Math. Scand., Volume 36 (1975) no. 1, pp. 49-73 | DOI | MR | Zbl

[41] Zhenhua Liu Homologically area-minimizing surfaces that cannot be calibrated (2023) | arXiv

[42] Cosmin Manea The spherical Plateau problem for group homology and Cannon’s conjecture (2023) (Master’s Thesis, ETH Zurich, Switzerland) | DOI

[43] Frank Morgan Area-minimizing currents bounded by higher multiples of curves, Rend. Circ. Mat. Palermo, Volume 33 (1984), pp. 37-46 | DOI | MR | Zbl

[44] John Morgan; Gang Tian The geometrization conjecture, Clay Mathematics Monographs, 5, American Mathematical Society; Clay Mathematics Institute, 2014 | MR | Zbl

[45] Denis V. Osin Peripheral fillings of relatively hyperbolic groups, Invent. Math., Volume 167 (2007) no. 2, pp. 295-326 | DOI | MR | Zbl

[46] Erika Pieroni Minimal Entropy of 3-manifolds, Ph. D. Thesis, University of Rome, Sapienza, Italy (2019) (https://arxiv.org/abs/1902.09190)

[47] Christian Riedweg; Daniel Schäppi Singular (Lipschitz) homology and homology of integral currents (2009) | arXiv

[48] Yuping Ruan The Cayley hyperbolic space and volume entropy rigidity (2022)

[49] Andrea Sambusetti Minimal entropy and simplicial volume, Manuscr. Math., Volume 99 (1999) no. 4, pp. 541-560 | DOI | MR | Zbl

[50] Antoine Song The spherical Plateau problem for group homology (2022) | arXiv

[51] Antoine Song Entropy and stability of hyperbolic manifolds (2023) | arXiv

[52] Christina Sormani Intrinsic flat Arzela–Ascoli theorems, Commun. Anal. Geom., Volume 26 (2018) no. 6, pp. 1317-1373 | DOI | MR | Zbl

[53] Christina Sormani; Stefan Wenger The intrinsic flat distance between Riemannian manifolds and other integral current spaces, J. Differ. Geom., Volume 87 (2011) no. 1, pp. 117-199 | DOI | MR | Zbl

[54] Juan Souto Minimal volume and minimal entropy, Ph. D. Thesis, Bonn University, Germany (2001)

[55] William P. Thurston Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, 35, Princeton University Press, 1997 (edited by Silvio Levy) | DOI | MR | Zbl

[56] Hsien Chung Wang Topics on totally discontinuous groups, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970) (Pure and Applied Mathematics), Volume 8, Marcel Dekker, 1972, pp. 459-487 | MR | Zbl

[57] Stefan Wenger Flat convergence for integral currents in metric spaces, Calc. Var. Partial Differ. Equ., Volume 28 (2007) no. 2, pp. 139-160 | DOI | MR | Zbl

[58] Stefan Wenger Compactness for manifolds and integral currents with bounded diameter and volume, Calc. Var. Partial Differ. Equ., Volume 40 (2011) no. 3-4, pp. 423-448 | DOI | MR | Zbl

[59] Stefan Wenger Plateau’s problem for integral currents in locally non-compact metric spaces, Adv. Calc. Var., Volume 7 (2014) no. 2, pp. 227-240 | DOI | MR | Zbl

[60] Brian White The least area bounded by multiples of a curve, Proc. Am. Math. Soc., Volume 90 (1984) no. 2, pp. 230-232 | DOI | MR | Zbl

[61] Roger Züst Lipschitz rigidigy of Lipschitz manifolds among integral current spaces (2023) | arXiv

Cité par Sources :