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SPHERICAL VOLUME AND SPHERICAL PLATEAU
PROBLEM

Antoine Song

Abstract. — Given a closed oriented manifold or more generally a group ho-
mology class, we introduce the spherical Plateau problem, which is a variational
problem corresponding to a topological invariant called the spherical volume. In
principle, its solutions should be realized by minimal surfaces in quotients of
spheres. We explain that in many geometrically interesting cases, those solutions
are essentially unique. We start with a review of the Ambrosio-Kirchheim theory
of metric currents, and the barycenter map method developed by Besson-Courtois-
Gallot. Then, we outline the following applications:

• the intrinsic uniqueness of spherical Plateau solutions for negatively curved,
locally symmetric, closed oriented manifolds,

• the intrinsic uniqueness of spherical Plateau solutions for all 3-dimensional
closed oriented manifolds,

• the construction of higher-dimensional analogues of hyperbolic Dehn fillings.
We also propose some open questions.
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Introduction

The classical Plateau problem, a fundamental question in Differential
Geometry, concerns the existence and regularity of surfaces of least area
spanning a given boundary contour inside the 3-dimensional Euclidean
space. The term “Plateau problem” has been extended to encompass any
situation where the objective is to construct and study “minimal surfaces”,
which are minimizers of a volume or area functional subject to topologi-
cal or geometric constraints. As a concrete example, consider a bounded
Riemannian manifold (N, g) of finite or infinite dimension, and fix an n-
dimensional integer homology class h ∈ Hn(N ;Z) where n is a positive
integer. Roughly speaking, the “volume” or “area” of this homology class
is defined as follows:

Area(h) := inf {Area(C);C is a cycle in N representing h} .

Here cycles can be intuitively understood as generalized n-submanifolds
of N . Let Ci be a sequence of cycles in N representing h, which is mini-
mizing in the sense that

lim
i→∞

Area(Ci) = Area(h).
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SPHERICAL VOLUME AND SPHERICAL PLATEAU PROBLEM 179

Thanks to adequate compactness results, a subsequence Cij
converges to

some limit space C∞ called Plateau solution. The properties of this limit
space, such as regularity, uniqueness, and geometric structure, are the main
focus of the Plateau problem. In some way, this space C∞ can be considered
as an “optimal geometric representative” of the homology class h of (N, g).
Uniqueness of Plateau solutions holds only in exceptional situations, and
this paper is about a natural Plateau problem in infinite dimension, for
which interesting uniqueness results hold or are conjectured to be true.

A central question in the study of Plateau problems is to define the
concepts of “cycle”, “area/volume” and “convergence”. We will rely on the
framework of integral currents in Geometric Measure Theory, as it pro-
vides the most far-reaching existence and regularity results so far, though
there are other possible choices. In this context, the Plateau problem has
been thoroughly studied for finite dimensional manifolds N : in particular
if the Riemannian manifold (N, g) is finite dimensional and closed, any
k-dimensional integer homology class h of N admits a volume-minimizing
integral current representative C∞ in N with volume equal to Area(h),
which is smooth outside of a codimension two subset (this object is a “gen-
eralized k-dimensional minimal surface”). This major result follows from
the successive works of De Giorgi, Federer–Fleming, Allard, Almgren, and
many others. See [29, Theorem 9.6] for the existence statement and the
surveys [2, 22] for the partial regularity problem.

However when the underlying manifold N is infinite-dimensional and
hence not locally compact, the situation becomes more challenging. Efforts
have been made to extend the theory of currents to arbitrary complete
metric spaces, which started with Ambrosio–Kirchheim’s article [4]. This
theory has since been applied, extended, and revisited by many researchers,
including Lang [39], Ambrosio–Schmidt [6], Wenger [57, 58, 59], Sormani-
Wenger [53], Ambrosio–De Lellis–Schmidt [3] etc. It is this extended the-
ory which allows us to define and construct Plateau solutions in general.
More concretely, if (N, g) is an infinite-dimensional complete Riemannian
manifold with finite diameter and h ∈ Hn(N ;Z), a cycle in (N, g) is by
definition a boundaryless integral current with compact support in (N, g)
in the sense of [4]. Its volume is given by the notion of mass of an inte-
gral current [4]. Given a minimizing sequence of cycles Ci representing h,
by Wenger’s compactness theorem [58], Ci subsequentially converges in the
intrinsic flat topology to an integral current space C∞ [53]. An integral cur-
rent space is roughly speaking determined by an underlying metric space

VOLUME 37 (2021-2022)



180 ANTOINE SONG

(X, d) and an integral current S in the completion of (X, d). Any such C∞
is called a Plateau solution for h.

Inspired by earlier works of Besson–Courtois–Gallot [14, 15, 16], we con-
sider the spherical Plateau problem, a natural infinite-dimensional Plateau
problem at the interface of geometric measure theory, geometric group the-
ory and topology. The ambient manifold (N, g) is of the following form:

(N, g) =
(
S∞/λΓ(Γ),gHil

)
where Γ is a countable group, S∞ is the unit sphere in ℓ2(Γ), Γ acts on
S∞ by the left regular representation λΓ : Γ → End(ℓ2(Γ)) and S∞/λΓ(Γ)
is endowed with the quotient of the round metric gHil. Given h ∈ Hn(S∞

/λΓ(Γ);Z), the invariant Area(h) is called the spherical volume of h and
denoted by

SphereVol(h) := inf{Vol(C); C is a cycle in S∞/λΓ(Γ) representing h}.

Versions of that invariant were first defined by Besson–Courtois–Gallot
[14, 15, 16]. This invariant is closely related to many other well-known
invariants: there is a chain of inequalities connecting simplicial volume,
spherical volume, minimal volume entropy and minimal volume for the
Ricci curvature, as explained in the survey of Kotschick [38, Section 2].
A more detailed definition is given in Section 3. The integral current spaces
C∞ corresponding to h, obtained by the recipe described in the previous
paragraph, are called spherical Plateau solutions for h.

Aim

The purpose of this note is to introduce the spherical Plateau problem,
and show that for many special choices of Γ and h ∈ Hn(S∞/λΓ(Γ);Z),
the spherical Plateau solutions are in a sense essentially unique and geo-
metrically meaningful. Throughout the text, we propose several questions
related to the spherical volume and the spherical Plateau problem.

The style of this article is rather informal, nevertheless we try to provide
a rather comprehensive review of the main technical tools.

We will outline the proofs of the three results stated below(1) , which
we view as a proof-of-concept justifying a general study of the spherical
Plateau problem.

(1) Most of the content in this survey is based on an earlier unpublished preprint [50].
Theorem 0.1 is proved in details in [51]. See also Cosmin Manea’s master’s thesis [42].
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Locally symmetric manifolds of negative curvature

The first result pertains to locally symmetric spaces of rank one. Let
(M, g0) be a closed oriented locally symmetric n-manifold with negative
curvature, and let Γ be its fundamental group. Let h(g0) be the volume
entropy of (M, g0), whose definition is recalled in (4.5). The quotient space
S∞/λΓ(Γ) is a classifying space for Γ and the fundamental class [M ] ∈
Hn(M ;Z) determines a unique homology class hM ∈ Hn(S∞/λΓ(Γ);Z) =
Hn(M ;Z). A key step in the proof of the celebrated volume entropy inequal-
ity of Besson–Courtois–Gallot [15] was the computation of SphereVol(hM )
with the barycenter map method, see Section 4. The barycenter map will
be a central tool in this paper too.

A closed oriented Riemannian n-manifold (W, gW ) admits a natural in-
tegral current structure [[1W ]] induced by its fundamental class [W ] ∈
Hn(W ;Z). A spherical Plateau solution C∞ for hM is called “intrinsically
isomorphic” to (W, gW ) if the underlying metric space of C∞ is intrinsi-
cally isometric to (W, gW ) via a map sending the current structure of C∞
to [[1W ]], see Definition 3.5.

Theorem 0.1. — If (M, g0) is a closed, oriented, locally symmetric
manifold of dimension n ⩾ 3, with negative curvature between −4 and
−1, then any spherical Plateau solution for hM is intrinsically isomorphic
to (M, h(g0)2

4n g0).

This intrinsic uniqueness result leads to the formulation of a new kind
of “area rigidity” property for the regular representation of π1(M) (see
Corollary 4.3), and a Rigidity Conjecture (see Question 8).

The proof of the above intrinsic uniqueness theorem can be applied to
show that the entropy inequality of Besson–Courtois–Gallot [15] is sta-
ble [51]. Similar questions for higher rank locally symmetric manifolds (even
the computation of the spherical volume) are still wide open, because the
barycenter map method does not work so well there [21]. Motivated by The-
orem 0.1, it is suggested in [20] to inspect the spherical Plateau problem
in the context of Cannon’s conjecture.

Closed oriented 3-manifolds

Our next result gives another large pool of examples where the spherical
Plateau solutions are almost explicit. Let M be a closed oriented 3-manifold
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and Γ its fundamental group. The fundamental class of M induces a homol-
ogy class hM ∈ H3(S∞/λΓ(Γ);Z). By the Geometrization theorem [37, 44],
M can be uniquely written as a connected sum M = M1# . . .#Mk where
each Mj is a closed oriented prime 3-manifold which is canonically divided
into two pieces along some tori: Mj = Mj,hyp ∪Mj,Seif where Mj,hyp carries
a finite-volume complete hyperbolic metric, and Mj,Seif is a union of Seifert
manifolds. The disjoint union of the hyperbolic pieces Mj,hyp endowed with
their hyperbolic metrics is denoted (Mhyp, ghyp).

Theorem 0.2. — If M is closed oriented 3-manifold with hyperbolic
part denoted by (Mhyp, ghyp), then any spherical Plateau solution for hM

is intrinsically isomorphic to (Mhyp,
1
3ghyp).

Hence the hyperbolic part (Mhyp, ghyp), which is canonically determined
by M , emerges as the solution of the spherical Plateau problem. The funda-
mental nature of the hyperbolic part (Mhyp, ghyp) had previously appeared
in other contexts including the Ricci flow, the Yamabe invariant, the sim-
plicial volume, the volume entropy, etc. For instance, the normalized Ricci
flow starting at any Riemannian metric on M converges as time goes to
infinity to (Mhyp, ghyp) in a multi-pointed Gromov–Hausdorff sense [37].

Plateau Dehn fillings

The two previous theorems show that, to some extent, spherical Plateau
solutions form a class of spaces which naturally generalizes locally sym-
metric manifolds of negative curvature. Our last result explores that in-
terpretation further in the context of Dehn fillings. Recall that in dimen-
sion 3, there is a fundamental feature of hyperbolic geometry discovered
by Thurston, called hyperbolic Dehn fillings [55]: in its simplest version, it
states that given any finite volume non-compact hyperbolic 3-manifold M ,
there is a sequence of finite volume hyperbolic manifolds Mi with volume
strictly less than that of M , and converging geometrically to M . In higher
dimensions, due to the finiteness theorem of H.C. Wang [56] for locally
symmetric negatively curved manifolds, such a phenomenon is impossible
in the smooth setting. Nevertheless, as we will see below, by enlarging the
set of locally symmetric negatively curved manifolds to the set of spheri-
cal Plateau solutions, we do have such an accumulation phenomenon in all
dimensions higher than 2. We start with the higher dimensional CAT(0)
Dehn fillings constructed by Fujiwara–Manning in [30]. These fillings are
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denoted by M(T1, . . . , Tm) and are obtained by closing the cusps of a fi-
nite volume non-compact hyperbolic n-manifold (M, ghyp) with toral cusps.
The Ti denote certain subtori in the m cusps of M , which are assumed to
have injectivity radius greater than π. Each M(T1, . . . , Tm) determines a
unique homology class hM(T1, ..., Tm) in the corresponding spherical quotient
S∞/λΓ(Γ) where Γ := π1(M(T1, . . . , Tm)). The behavior of Plateau Dehn
fillings, namely the spherical Plateau solutions for hM(T1, ..., Tm), is com-
pletely analogous to the 3-dimensional case of hyperbolic Dehn fillings [32]:

Theorem 0.3. — We have

SphereVol
(
hM(T1, ..., Tm)

)
< Vol

(
M,

(n− 1)2

4n ghyp

)
.

Moreover for any ϵ > 0, if the injectivity radii of T1, . . . , Tm are sufficiently
large, then

SphereVol
(
hM(T1, ..., Tm)

)
> Vol

(
M,

(n− 1)2

4n ghyp

)
− ϵ

and any spherical Plateau solution for hM(T1, ..., Tm) is ϵ-close, in the in-
trinsic flat topology, to an integral current space intrinsically isomorphic
to (M, (n−1)2

4n ghyp).

Fujiwara–Manning previously proved that the fillings M(T1, . . . , Tm)
have simplicial volumes satisfying∥∥M(T1, . . . , Tm)

∥∥ ⩽ ∥M∥

where ∥M∥ is the simplicial volume of M , and conjectured that ∥M(T1, . . . ,

Tm)∥ converges to ∥M∥ as the injectivity radius of the tori Ti goes to
infinity, but never attains the limit [31, Conjecture 1.8, Question 1.9]. The
previous theorem settles the spherical volume version of this conjecture. For
the construction of Einstein manifolds analogous to Dehn fillings, see [7, 10].

Outline of the paper

In Section 1, we give an overview of the theory of integral currents in
metric spaces developed by Ambrosio–Kirchheim and others. Results are
stated without proofs.

In Section 2, we explain in details the barycenter map and reproduce
the proofs of some important properties. For clarity, we focus only on the
hyperbolic case.
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In Section 3, the spherical Plateau problem is defined, and basic proper-
ties of spherical cycles are discussed.

In Section 4, we sketch Besson–Courtois–Gallot’s computation of the
spherical volume for hyperbolic manifolds. We briefly explain its relation
to the volume entropy inequality. We then outline the proof of our first
uniqueness result, Theorem 4.2.

In Section 5, we indicate how to apply the Geometrization theorem for
3-manifolds, and extend the arguments of Theorem 4.2 to prove the unique-
ness statement for 3-manifolds, Theorem 5.2.

In Section 6, we describe the idea behind Plateau Dehn fillings and The-
orem 6.2, which can be viewed as an asymptotic uniqueness result.
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1. Preliminaries on metric integral currents

The classical notion of integral currents in finite dimensional manifolds
[27] exhibits simultaneously several properties explaining the success of the
theory: they are mild generalizations of submanifolds, they satisfy strong
compactness results and minimizers of the volume are smooth submani-
folds outside of a small singular set [1, 23]. Building on earlier ideas of De
Giorgi and Gromov, Ambrosio–Kirchheim [4, 5] initiated an extension of
the theory to complete metric spaces, including infinite-dimensional Rie-
mannian manifolds. Further developments led to Wenger’s compactness
result [58] which will be essential to define spherical Plateau solutions (Sub-
section 3.1). In this section, we review the definitions and results developed
in [4, 5, 53, 57, 58].
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1.1. Basic definitions

Let (E, d) be a complete metric space(2) . Let n ⩾ 0, and let Dn(E) be
the set of (n + 1)-tuples (f, π1, . . . , πn) of Lipschitz functions on E with
f bounded. As a suggestive reference to the finite dimensional theory of
currents, (f, π1, . . . , πn) is also usually denoted by fdπ1∧. . . , ∧dπn. Metric
currents in the sense of Ambrosio–Kirchheim are a flexible generalization
of oriented submanifolds:

Definition 1.1 ([4]). — An n-dimensional metric current in (E, d) is a
multi-linear functional on Dn(E) such that

(1) If πj
i converges pointwise to πi as j → ∞, and if supi,j Lip(πj

i ) < ∞,
then

lim
j→∞

T
(
fdπj

1 ∧ . . . , ∧dπj
n

)
= T (fdπ1 ∧ . . . , ∧dπn).

(2) If {x ∈ E; f(x) ̸= 0} is contained in the union
⋃n

i=1 Bi of Borel sets
Bi and if πi is constant on Bi then

T (fdπ1 ∧ . . . , ∧dπn) = 0.

(3) There exists a finite Borel measure µ on E such that∣∣T (fdπ1 ∧ . . . , ∧dπn)
∣∣ ⩽ k∏

i=1
Lip(πi)

∫
E

|f |dµ

for all fdπ1 ∧ . . . , ∧dπn ∈ Dn(E).

The minimal Borel measure µ satisfying the above inequality is called
the mass of T and denoted by ∥T∥. The total mass of T is defined as

M(T ) := ∥T∥(E),

and should be thought of as the “n-dimensional volume” of T . Currents in
the sense of Ambrosio–Kirchheim [4] have finite mass by definition (and we
will only consider such currents here), but there is a variant of this theory
due to Lang [39] which avoids the finite mass condition. The support spt(T )
of T is the support of the measure ∥T∥ in the usual sense. The canonical
set of T , called set(T ), is the collection of points in E with a positive lower
density:

set(T ) :=
{
p ∈ E; lim

r→0+
∥T∥(B(p, r))r−n > 0

}
.

In general,
set(T ) ⊂ spt(T )

(2) The metric d is allowed to take ∞ as value.
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and the inclusion is usually strict. The boundary ∂T is defined by

∂T (fdπ1 ∧ . . . , ∧dπn−1) := T (1df ∧ dπ1 ∧ . . . , ∧dπn)

for all fdπ1∧. . . , ∧dπn−1 ∈ Dn−1(E). The push-forward of T by a Lipschitz
map ψ from E to another complete metric space E′ is given by

ψ♯T (fdπ1 ∧ . . . , ∧dπn) := T
(
f ◦ ψd(π1 ◦ ψ) ∧ · · · ∧ d(πn ◦ ψ)

)
for all fdπ1 ∧ . . . , ∧dπn ∈ Dn(E′). There is also a notion of restriction of
T to a Borel subset A ⊂ E:

(T⌞A)(fdπ1 ∧ . . . , ∧dπn) := T (fχAdπ1 ∧ . . . , ∧dπn)

where χA is the characteristic function of A (the above is well-defined by
an extension of the functional T ).

1.2. Rectifiable sets and integral currents

We are mainly interested in integral currents, which roughly speaking are
currents T such that both T and ∂T are the push-forward of a countable
union of elementary currents by Lipschitz maps. An elementary current is
obtained as follows: consider θ ∈ L1(A;N) where A ⊂ Rn, then define the
following current in Rn: for all fdπ1 ∧ . . . ,∧dπn ∈ Dn(Rn),

[[θ]](fdπ1 ∧ . . . , ∧dπn) :=
∫

A

θfdπ1 ∧ . . . , ∧dπn.

Integer rectifiable currents and integral currents enjoy the following charac-
terizations [4, Theorem 4.5, Theorem 8.6], which we will take as definitions:

Definition 1.2 ([4]). — A current T in E is an n-dimensional integer
rectifiable current if and only if there are Lipschitz maps φi : Ai → E

where Ai ⊂ Rn are precompact Borel measurable and have disjoint images
by φi, and there are θi ∈ L1(Ai;N) such that

T =
∞∑

i=1
(φi)♯[[θi]], and ∥T∥ =

∞∑
i=1

∥∥(φi)♯[[θi]]
∥∥.

The pair ({φi : Ai → E}, {θi}) is called a parametrization.
The current T is an integral current if and only if both T and ∂T are

integer rectifiable currents.

For instance, if (M, g) is a complete oriented Riemannian manifold with
compact boundary and finite volume, then it carries a natural n-dimensio-
nal integral current usually denoted by [[1M ]], induced by “integration
on M”.
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Recall that a Borel set S ⊂ E is countable Hn-rectifiable if there is a
sequence of Lipschitz functions φi : Ai → E where Ai ⊂ Rn is Borel, such
that

(1.1) Hn

(
S \

⋃
i

φi(Ai)
)

= 0

where Hn denotes the n-dimensional Hausdorff measure. It is proved in
[4, Theorem 4.6] that if T is an n-dimensional integral current with a
parametrization ({φi}, {θi}), then

Hn

(
set(T ) \

∞⋃
i=1

φi(Ai) ∪
∞⋃

i=1
φi(Ai) \ set(T )

)
= 0.

The canonical set set(T ) is in particular a countably Hn-rectifiable set in E
(contrarily to the support spt(T ), in general). The functions θi determine
a Borel function called the multiplicity function θT : E → N, which is well-
defined Hn-almost everywhere. In the special case where E is an infinite
Riemannian dimensional manifold (i.e. locally modelled on a Hilbert space),
it is shown in [4, Theorem 9.5] that

∥T∥ = θT Hn⌞set(T ).

That intuitive formula needs a correction factor in the case of general Ba-
nach spaces.

1.3. Weak and flat topology

There are two fundamental notions of convergence for integral currents
in a metric space: the weak and flat convergences. A sequence {Tm} of
n-dimensional integral currents in E is said to converge weakly to some
current T if for all fdπ1 ∧ . . . , ∧dπn ∈ Dn(E),

lim
m→∞

Tm (fdπ1 ∧ . . . , ∧dπn) = T (fdπ1 ∧ . . . , ∧dπn) .

In that case, an important result states that such a limit T is also an inte-
gral current [4, Theorem 8.5]. Besides, a fundamental property of the mass
which makes it so useful in Plateau problems is that it is lower semicontinu-
ous with respect to weak converge, see paragraph below [4, Definition 3.6]:
if Tm converges weakly to T then

M(T ) ⩽ lim inf
m→∞

M(Tm).
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The sequence {Tm} is said to converge to T in the flat topology if there
are sequences {Um}, {Vm} of integral currents such that

Tm − T = Um + ∂Vm, lim
m→∞

M(Um) = lim
m→∞

M(Vm) = 0.

Convergence in the flat topology implies convergence in the weak topology.
A partial converse is proved in [57].

1.4. The area and coarea formulas

Next we recall some versions of two particularly useful tools, the area and
coarea formulas for countably Hn-rectifiable sets. In this paragraph we as-
sume for simplicity that (E, d) is a separable complete infinite-dimensional
Riemannian manifold, embedded isometrically inside an ℓ∞ space Y by
a Kuratowski embedding, since only that case is needed here. Note that
an ℓ∞ space is a w∗-separable dual space in the sense of [4]. Given a Lip-
schitz map ψ : A → E where A ⊂ Rn is Borel, for almost every y ∈ A,
ψ is w∗-differentiable at y with a w∗-differential called wdyψ in the sense
of [4, Section 9], [5]. The latter is a linear map from TyRn to Y . For almost
every y ∈ A, wdyψ is of full rank; in that case the image Q := wdyψ(TyRn)
is called an approximate tangent n-plane at p := ψ(y). Such Q is a lin-
ear n-plane inside Y , and in our case it is also a tangent n-plane of the
manifold E. More generally, let S ⊂ E be a countably Hn-rectifiable set,
with {φi : Ai → E} as in (1.1). At Hn-almost every p ∈ S, there are i and
y ∈ Ai such that φi(y) = p and an approximate tangent n-plane Q at p
exists in the sense above.

Let S be a countably Hn-rectifiable set in E. Given a Lispchitz map
g : S → E′ where E′ is another separable complete infinite-dimensional
Riemannian manifold embedded isometrically in an ℓ∞ space Y ′, there
is a well-defined nonnegative number for Hn-almost every z ∈ S, called
the Jacobian of g and denoted by Jn(dSgz), such that the following area
formula [5, Theorem 8.2] holds for any Borel function θ : S → [0,∞]:

(1.2)
∫

S

θ(p)Jn(dSgp)dHn(p) =
∫

E′

∑
p ∈ S ∩ g−1(z)

θ(p)dHn(z).

More concretely, suppose that for {φi : Ai → E} as (1.1), for i and y ∈
Ai, p := φi(y) ∈ S, and suppose that φi is w∗-differentiable at y with
a w∗-differential of full rank, and the composition g ◦ φi : Rn → E′ is
w∗-differentiable at y (all of this holds for almost every y ∈ Ai). Let

Q := wdyφi (TyRn)
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be the tangent n-plane at p. Then g is tangentially differentiable at p along
Q with tangential differential dSgp : Q → Tg(p)E

′ satisfying:

dSgp = wdy(g ◦ φi) ◦ (wdyφi)−1
.

In our case where E,E′ are infinite-dimensional Riemannian manifolds, Q
and Tg(p)E

′ are Hilbert linear spaces. The Jacobian Jn(dgp) is then equal
to the absolute value of the usual Jacobian determinant of the linear map
dSgp. In particular when g is λ-Lipschitz then

Jn(dgz) ⩽ λn

as expected. Given a tangent n-plane Q of S at p as above, we often use
the following more classical notations:

dg
∣∣
Q

:= dSgp,∣∣∣Jac g
∣∣
Q

∣∣∣ := Jn

(
dSgp

)
.

Let S be a countably Hn-rectifiable set in E. Consider a Lipschitz func-
tion π : S → Rk where k ⩽ n. At Hn-almost every p ∈ S, there is a
tangent n-plane Q along which the tangential differential dSπp exists. At
such p, there is a nonnegative number called coarea factor and denoted by
Ck(dSπp) such that the following coarea formula [5, Theorem 9.4] holds
for any Borel function θ : S → [0,∞]:

(1.3)
∫

S

θ(p)Ck

(
dSπp

)
dHn(p) =

∫
Rk

(∫
π−1(z)

θ(p)dHn−k(p)
)
dHk(z).

Besides, for Hk-almost every z ∈ Rk, the set π−1(z) ∩ S is countably
Hn−k-rectifiable. The precise definition of the coarea factor Ck(dπz) is
a bit more involved than the Jacobian [5, Definition 9.1], nevertheless it is
similar to what appears in the smooth finite dimensional case and when π is
λ-Lipschitz then

Ck(dπz) ⩽ λk

as expected.

1.5. The slicing theorem for integral currents

We move on to the slicing theorem for integral currents, which enables
to construct lower dimensional integral currents out of a given integral
current and a Lipschitz map. Again, we still assume for simplicity that E is
an infinite-dimensional Riemannian manifold (locally modelled on a Hilbert
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space). Let S be a countably Hn-rectifiable set in E. Given fdπ1∧· · ·∧dπn ∈
Dn(E), then at Hn-almost every p ∈ S, an approximate tangent n-plane Q
exists, the tangential differentials dS(πj)p along Q exist and the n-covector
fdSπ1 ∧ · · · ∧ dSπn is well-defined. There is a notion of orientations on
S [4, Section 9]. Roughly speaking, an orientation τ on S endows each
approximate tangent n-plane Q of S with an n-vector e1 ∧ · · · ∧ en where
(e1, . . . , en) is an orthonormal basis of Q (recall that here E is a manifold).

Let T be an n-dimensional integral current in E, with multiplicity func-
tion θT . There is an intrinsic description of T , based on the notion of
orientation [4, Theorem 9.1]. In fact there is an orientation τT on set(T )
such that for all fdπ1 ∧ · · · ∧ dπn ∈ Dn(E),

T (fdπ1 ∧ · · · ∧ dπn)

=
∫

set(T )
f(p)θT (p)

〈
dset(T )π1 ∧ · · · ∧ dset(T )πn, τT

〉
dHn(p).

Conversely if S is a countably Hn-rectifiable set in E, if we have θ : E → N
such that

∫
S
θdHn < ∞, and an orientation τ on S then the current

[[S, θ, τ ]]

defined by the analogue of the formula above is an n-dimensional integral
current.

Now consider a Lipschitz map π : spt(T ) → Rk where k ⩽ n. Then
for each x ∈ Rk, there is an integral current ⟨T, π, x⟩ called sliced current
[4, Theorems 5.6 and 5.7], characterized by the fact that for all fdπ1 ∧· · ·∧
dπn−k ∈ Dn−k(E) and ψ ∈ Cc(Rk),

(1.4)
[∫

Rk

⟨T, π, x⟩ψ(x)dx
]

(fdπ1 ∧ · · · ∧ dπn−k)

= T
(
f.(ψ ◦ π)dπ ∧ dπ1 · · · ∧ dπn−k

)
where if π = (u1, . . . , uk) and uj are the coordinate functions, then dπ :=
du1 ∧ · · · ∧ duk. Besides, with the notation T = [[set(T ), θT , τT ]] defined
above, for almost every x ∈ Rk we have an orientation τx of set(T )∩π−1(x)
such that

(1.5) ⟨T, π, x⟩ =
[[

set(T ) ∩ π−1(x), θT , τx

]]
,

see [4, Theorem 9.7]. The fact that

spt(∂⟨T, π, x⟩) ⊂ spt(∂T ),

follows from [4, Theorem 5.6(i)] applied to the boundary ∂T , or alterna-
tively by iterating [4, Theorem 5.6(iii), Lemma 5.3].
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1.6. Integral current spaces and intrinsic flat topology

We end this section with the definitions of integral current spaces, the
intrinsic flat topology of Sormani–Wenger, and Wenger’s compactness the-
orem [53].

Definition 1.3. — An integral current space of dimension n is a triple

C := (X, d, T )

where (X, d) is a metric space with completion called X, and T is an n-
dimensional integral current in X, such that set(T ) = X. The mass M(C)
is by definition M(T ).

A simple example of integral current space is given by a complete, ori-
ented Riemannian n-manifold (M, g) with compact boundary and finite
volume: the metric space is M endowed with the geodesic distance distg

induced by g, and the integral current structure [[1M ]] is the natural inte-
gral current induced by integration on M . Recall that we allow the metric
to assume ∞ as value, and so we allow M to be non-connected. In general,
an integral current in a metric space E determines uniquely an integral
current space. The boundary ∂C is the integral current space induced by
∂T .

If C := (X, d, T ), C ′ := (X ′, d′, T ′) are two integral current spaces such
that there is an isometry φ : X → X ′ with φ♯T = T ′ (such a φ is called a
current preserving isometry [53, Definition 3.26]), then we say that C and
C ′ are isomorphic.

In the same way that Gromov–Hausdorff convergence generalizes Haus-
dorff convergence by allowing arbitrary isometric embeddings in a complete
metric space, the notion of intrinsic flat convergence generalizes flat con-
vergence as follows [53, Theorem 4.2].

Definition 1.4. — A sequence of integral current spaces {(Xm, dm,

Sm)}m ⩾ 0 converges in the intrinsic flat topology to an integral current
space (X∞, d∞, S∞) when there is a complete metric space Z and there are
isometric embeddings

jm : Xm → Z, j∞ : X∞ → Z

such that (jm)♯(Sm) converges in the flat topology to (j∞)♯(S∞) inside Z.

The complete metric space Z can be taken to be a Banach space if
the metrics dm, d∞ only assume finite values, by the standard Kuratowski
embedding. Actually the above notion of convergence is induced by a metric
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called the intrinsic flat distance dF and defined in [53, Definition 1.1]:
given two integral current spaces of dimension n, C := (X, d, S) and C ′ :=
(X ′, d′, S′), set

dF (C,C ′) := inf{M(U) + M(V )}
where the infimum is taken over all complete metric spaces (Z, d) and
all integral currents U , V in Z such that there are isometric embeddings
φ : (X, d) → Z, φ′ : (X ′, d′) → Z with

φ♯(S) − (φ′)♯(S′) = U + ∂V.

By [53, Theorem 3.27], dF (C,C ′) = 0 if and only if C and C ′ are isomor-
phic.

One of the fundamental properties of integral current spaces is the fol-
lowing compactness theorem [53, Theorem 4.19], [58]:

Theorem 1.5 ([53, 58]). — if for some constant c, {(Xm, dm, Sm)}m ⩾ 0
is a sequence of n-dimensional integral current spaces with

M(Sm) + M(∂Sm) ⩽ c < ∞,

diam(spt(Sm)) ⩽ c,

then there is a subsequence {(Xmk
, dmk

, Smk
)}k ⩾ 0 converging in the intrin-

sic flat topology to an n-dimensional integral current space (X∞, d∞, S∞).

The above compactness result will be necessary when defining spherical
Plateau solutions in Subsection 3.1.

1.7. Approximation of integral currents by polyhedral chains

We end this section with a useful approximation theorem for integral
currents in spherical manifolds by polyhedral chains. This result can be
simply deduced from the analogous result in finite dimensions, which in
turn is completely standard.

Let (N, gN ) be an infinite-dimensional Riemannian manifold which is
locally isometric to the unit sphere of an infinite-dimensional Hilbert space.
In our context, a k-dimensional integral current P in (N, gN ) is called a
polyhedral chain of dimension k if there are smoothly embedded totally
geodesic k-simplices S1, . . . , Sm ⊂ N endowed with an orientation, and
integers aj so that

P =
m∑

j=1
aj

[[
1Sj

]]
.
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Lemma 1.6. — For any ϵ > 0, and any integral current C with compact
support in (N, gN ), there is a polyhedral chain P such that

• C and P are ϵ-close in the flat topology,
• spt(C) and spt(P ) are ϵ-close in the Hausdorff topology,
• |M(C) − M(P )| ⩽ ϵ.

Here is an outline of proof. Consider an open ball B centered at the
origin in the Hilbert space ℓ2(N) where N is the set of natural numbers, and
consider an integral current C with compact support in B. For any integer
L ⩾ 1, we can use the orthogonal projection onto ℓ2({1, . . . , L}) to map C
to an integral current C1 compactly supported inside the finite dimensional
space B∩ℓ2({1, . . . , L}). If L is chosen large enough, C1 will be as close to
C as we wish in the sense of Lemma 1.6. Now C1 is also an integral current
in the sense of Federer–Fleming (see the appendix of [4]), so the usual
approximation results ([27, Sections 4.1 and 4.2], [24]) in finite dimension
can be applied and give the desired polyhedral chain approximation P1
in B ∩ ℓ2({1, . . . , L}). This construction clearly generalizes to small balls
in (N, gN ) if N is separable, which can always be assumed to be true
since spt(C) is compact. In the general case where the support of C is not
contained in a small ball of N , one can argue using a partition of unity
and construct via an interpolation map a current C2 arbitrarily close to
C in the sense of Lemma 1.6, which is locally finite dimensional in the
following sense: for any x ∈ spt(C2), there is a ball Bx containing x such
that spt(C2)∩Bx is contained in a totally geodesic finite dimensional plane
of Bx. The rest is standard as before.

2. Preliminaries on the barycenter map

In [15, 16], Besson–Courtois–Gallot proved that the normalized volume
entropy on a closed hyperbolic manifold of dimension at least 3 is uniquely
achieved at the hyperbolic metric. The proof of this striking result relies on
the barycenter map. In this section(3) , we define a variant of the barycenter
map used in [15, 16] (see also [49]), which we will need in the proofs of the
uniqueness of spherical Plateau solutions. Instead of working with L2 func-
tions on a boundary at infinity as in [15], we directly work with ℓ2 functions
on the underlying group Γ. This setup is better adapted to extensions to
more general situations (3-manifolds, Plateau Dehn fillings). This section

(3) I would like to thank Cosmin Manea for corrections and useful discussions about this
section.
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only treats hyperbolic manifolds, even though everything carries out more
generally in the locally symmetric rank one case. All the results here are
essentially contained in [15].

2.1. Definition of the barycenter map

Let (M, g0) be a closed oriented hyperbolic manifold. Let (M̃, g0) be
its universal cover, namely the hyperbolic n-space. Let Γ := π1(M). The
latter acts properly cocompactly, freely and properly on (M̃, g0). Let S∞

be the unit sphere in the Hilbert space ℓ2(Γ), on which Γ acts freely and
properly by isometries via the regular representation λΓ : Γ → ℓ2(Γ), and
let S∞/λΓ(Γ) be the quotient manifold endowed with the standard round
metric (see Subsection 3.1).

It is well-known that the distance functions on (M̃, g0) satisfy the fol-
lowing Hessian lower bound: for any fixed w ∈ M̃ , at any point different
from w we have

Dddistg0(w, .) ⩾ Id −ddistg0(w, .) ⊗ ddistg0(w, .).

Distance functions are not smooth so in the setting of hyperbolic manifolds,
it is more convenient from a technical point of view to work with modi-
fied distance functions called ρw. Fix a smooth strictly convex increasing
function

κ : [0,∞) → [0,∞)

such that limt→∞ t−1κ(t) = 1, κ′(t) < 1 for all t, and for any w ∈ M̃ , the
composition

ρw(.) := κ(distg0(w, .))

is smooth everywhere and satisfies

(2.1) Ddρw ⩾ Id −dρw ⊗ dρw.

Such a function exists, for example if we set

κ(t) = 1
c

log(cosh(ct))

where c is a positive constant, it is an exercise to check that (2.1) holds
whenever c is large enough.
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Definition 2.1. — Fix a basepoint o ∈ M̃ . Let S+ be the set of func-
tions in S∞ with finite support. For f ∈ S+, consider the functional

Bf : M̃ → [0,∞]

Bf (x) :=
∑
γ ∈ Γ

|f(γ)|2 ργ.o(x).(2.2)

The barycenter map is then defined as

Bar : S+ → M̃

Bar(f) := the unique point minimizing Bf .

The barycenter map is well-defined: the modified distance functions ργ.o

are strictly convex, moreover Bf tends to infinity uniformly as x → ∞,
so that the point where Bf attains its minimum exists and is unique. The
subset S+ ⊂ S∞ is invariant by Γ, and Bar is Γ-equivariant. The quotient
map

S+/λΓ(Γ) → M

is also denoted by Bar.

2.2. Notations and a priori Lipschitz bounds

The regularity of the barycenter map

Bar : S+/λΓ(Γ) → M

is not completely immediate. To avoid discussing such issues, we will only
consider the barycenter map restricted to the support of polyhedral chains
in S+/λΓ(Γ). Recall that by definition (see Subsection 1.7), a k-dimensional
polyhedral chain P in S+/λΓ(Γ) is a k-dimensional integral current that
can be written as

P =
m∑

j=1
aj

[[
1Sj

]]
where aj are integers and

S1, . . . , Sm ⊂ S+/λΓ(Γ) ⊂ S∞/λΓ(Γ)

are finitely many smoothly embedded totally geodesic k-simplices endowed
with an orientation. In particular the support of a polyhedral chain is by
definition a finite union of totally geodesic simplices. Given a polyhedral
chain P as above, each simplex Sj lifts to a simplex S̃j in S+ ⊂ ℓ2(Γ). We
claim that there is a finite set Sj ⊂ Γ depending only on S̃j such that any
element of S̃j is a function with support in Sj . Indeed, the k-simplex S̃j
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is the convex hull of its extremal points f0, . . . , fk ∈ S+. If Sj denotes the
union of the finite supports of f0, . . . , fk, then any linear combination of
those functions has support contained in Sj , and that proves the claim. Now
given a polyhedral chain P in S+/λΓ(Γ), one can check without difficulty
that the restriction

Bar : spt(P ) → M

is continuous (and smooth on each simplex by the discussion below).
Consider f ∈ S+. For v ∈ TxM̃ , set

(2.3) Hf (v, v) :=
∑

γ

f2(γ) |dxργ.o(v)|2 .

The endomorphism Hf is symmetric, it satisfies

TrHf < 1

due to the fact that |∇ργ.o| < 1, and has eigenvalues

0 ⩽ µ1(f) ⩽ · · · ⩽ µn(f) < 1.

In particular Id −Hf has strictly positive determinant. For v ∈ TxM̃ , set

Kf (v, v) :=
∑

γ

f2(γ)Ddxργ.o(v, v).

By strict convexity of the modified distance functions,

(2.4) ∀ v ∈ TxM̃ \ {0}, Kf (v, v) > 0.

The barycenter x of f is characterized by the equation

(2.5)
∑
γ ∈ Γ

f2(γ)dxργ.o(.) = 0 ∈ T ∗
xM̃.

For 1 ⩽ k ⩽ n, let ξ be a totally geodesic k-simplex contained in S+,
embedded in S∞, passing through f ∈ S+. Then the restriction of Bar to ξ
is smoothly differentiable around f because of the implicit function theorem
and (2.4), (2.5). Let Q be the tangent n-plane of ξ at f . The differential
of Bar along Q is denoted by dBar

∣∣
Q

: Q → TBar(p)M̃ . Sometimes we
will drop the subscript |Q when the choice of tangent k-plane is clear. By
differentiating (2.5) with respect to f we obtain for all ḟ ∈ Q:∑

γ ∈ Γ
2f(γ)ḟ(γ)dxργ.o(.) +

∑
γ ∈ sΓ

f2(γ)Ddxργ.o

(
dBar

∣∣
Q(ḟ), .

)
= 0.

After applying Cauchy–Schwarz, we get the following: for all v ∈ TxM̃ and
ḟ ∈ Q, with ∥ḟ∥ℓ2 = 1,

(2.6) Kf

(
dBar

∣∣
Q

(ḟ), v
)
⩽ 2 [Hf (v, v)]1/2
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and

(2.7)
∣∣∣Jac Bar

∣∣
Q

∣∣∣ ⩽ 2n (detHf )1/2

detKf
⩽ 2n (detHf )1/2

det(Id −Hf ) .

Going from (2.6) to the first inequality in (2.7) is an application of the
Gram–Schmidt orthonormalization process for matrices, see the proof of
[16, Lemma 5.4]. The second inequality in (2.7) is a consequence of the
inequality

(2.8) Kf ⩾ Id −Hf

which in turn follows from (2.1).
For any f ∈ S+, let µ1(f) ⩽ · · · ⩽ µn(f) be the eigenvalues of the

endomorphism Hf defined in (2.3). The following is an a priori Lipschitz
bound corresponding to [15, Lemma 7.5.a].

Lemma 2.2. — Let κ > 0 and let α ⊂ S+ be a connected continuous
piecewise geodesic curve. Suppose that for all f ∈ α, µn(f) ⩽ 1 − κ/2.
Then

lengthg0(Bar(α)) ⩽ K1 length(α)

for a constant K1 depending only on κ.

Proof. — Given f ∈ α, let V be the tangent 1-plane of α at f , let ḟ ∈ V

with ∥ḟ∥ℓ2 = 1, and suppose that df Bar(ḟ) ̸= 0. Set v := df Bar(ḟ)
|df Bar(ḟ)| ∈ TxM̃ .

By (2.6) and (2.8),

(2.9)
∣∣df Bar(ḟ)

∣∣ ⩽ 2(Hf (v, v))1/2

1 −Hf (v, v) .

The lemma readily follows from integrating (2.9) along α. □

Here is another a priori bound corresponding to [15, Lemma 7.5.b].

Lemma 2.3. — Let f, f ′ ∈ S+ and let β be the geodesic segment joining
Bar(f) and Bar(f ′). Let P be the parallel transport from Bar(f) to Bar(f ′)
along β. Then

∥Hf ′ ◦ P −Hf ∥ ⩽ K2
(
lengthg0(β) + ∥f − f ′∥ℓ2

)
for a constant K2.

Proof. — Let Y0 be a unit norm tangent vector of M based at Bar(f)
and let Y2 be its parallel transport at Bar(f ′) along β. Then, writing x :=
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Bar(f), x′ := Bar(f ′),

(2.10) |Hf ′(Y2, Y2) −Hf (Y0, Y0)|

=

∣∣∣∣∣∑
γ

(f ′)2(γ)|dx′ργ.o(Y2)|2 −
∑

γ

f2(γ)|dxργ.o(Y0)|2
∣∣∣∣∣

⩽

∣∣∣∣∣∑
γ

f2(γ)
(
|dx′ργ.o(Y2)|2 − |dxργ.o(Y0)|2

)∣∣∣∣∣
+

∣∣∣∣∣∑
γ

(
(f ′)2(γ) − f2(γ)

) ∣∣∣∣∣ dx′ργ.o(Y2)

∣∣∣∣∣
2

.

The Hessian of the smooth modified distance functions ργ.o is uniformly
bounded from above. This bound controls uniformly the terms

(
|dx′ρw(Y2)|2

− |dxρw(Y0)|2
)

by integration along β, and we conclude the proof with
Cauchy–Schwarz. □

2.3. The Jacobian bound

We are now ready to state the main estimates for the Jacobian of the
barycenter map, which is sharp and is the key technical point in [15, 16].

Lemma 2.4 ([15]). — Suppose that n ⩾ 3. Let f ∈ S+ and let Q be the
tangent n-plane at f of a totally geodesic n-simplex in S+ passing through
f . Then

(2.11)
∣∣∣Jac Bar

∣∣
Q

∣∣∣ ⩽ ( 4n
(n− 1)2

)n/2
.

Moreover for any η > 0 small enough, there exists cη > 0 with limη→0 cη

= 0, such that the following holds. If∣∣∣Jac Bar
∣∣
Q

∣∣∣ ⩾ ( 4n
(n− 1)2

)n/2
− η,

then for any norm 1 tangent vector u⃗ ∈ Q,

(2.12)
∣∣∣dBar

∣∣
Q

(u⃗)
∣∣∣ ⩾ ( 4n

(n− 1)2

)1/2
− cη

and for any connected continuous piecewise geodesic curve α ⊂ S+ of length
less than η starting at f , we have

(2.13) lengthg0(Bar(α)) ⩽
((

4n
(n− 1)2

)1/2
+ cη

)
length(α).
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Proof. — The upper bound for the Jacobian is proved by combining (2.7)
and [15, Proposition B.1].

Let us move on to the second part of the lemma. As before, denote by
0 ⩽ µ1(f) ⩽ · · · ⩽ µn(f) < 1 the eigenvalues of Hf . Let θ > 1 be such
that Tr(θHf ) = 1. By the key bound in [15, Proposition B.5], there is a
universal constant A > 0 such that

2n (detHf )1/2

det
(

Id −Hf

) ⩽

(
4n

(n− 1)2

)n/2
1 −A

n∑
j=1

(
θµj(f) − 1

n

)2
 .

Hence for any η′ > 0 if | Jac Bar
∣∣
Q

| ⩾
( 4n

(n−1)2

)n/2 − η for a small η, then

(2.14) µn(f) ⩽ 1
n

+ η′.

and so by (2.6) we have for all norm 1 tangent vector u⃗ ∈ Q:

(2.15)
∣∣∣dBar

∣∣
Q

(u⃗)
∣∣∣ ⩽ ( 4n

(n− 1)2

)1/2
+ c′′

η

where limη→0 c
′′
η = 0. Therefore if | Jac Bar|Q| ⩾ ( 4n

(n−1)2 )n/2−η, then (2.15)
forces the following to hold: for all norm 1 tangent vector u⃗ ∈ Q,∣∣∣dBar

∣∣
Q

(u⃗)
∣∣∣ ⩾ ( 4n

(n− 1)2

)n/2
− cη

where limη→0 cη = 0.
We want to propagate the estimate (2.15) on ∥dBar∥ to a whole “neigh-

borhood” of f inside S+. Suppose that a continuous piecewise geodesic
curve α ⊂ S+ joins f to f ′ and has length less than a number η. Let us
check, as an intermediate step, that for κ > 0,

(2.16) if µn(f) ⩽ 1 − κ, then µn(f ′) ⩽ 1 − κ+ c′
η

where the constant c′
η depends only on η and satisfies limη→0 c

′
η = 0. In-

deed, we can proceed as in [15, Lemma 7.5]. Let K1,K2 as in Lemmas 2.2
and 2.3. Suppose that µn(f) ⩽ 1 − κ, and that η is small so that there is
K3 with K2(K1 + 1) + 1 < K3 <

κ
2η . To argue towards a contradiction,

assume that (2.16) is not true and that there is a point f1 ∈ S+ joined to
f by a continuous piecewise geodesic curve α ⊂ S+ of length less than η,
such that

µn(f1) ⩾ 1 − κ+K3η.

By truncating the curve, we can also assume that f1 is the only point on
α which satisfies the above condition, so that µn(f0) ⩽ 1 − κ/2 for every
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f0 ∈ σ. We have µn(f1) ⩾ 1 − κ + K3η, but by Lemmas 2.2 and 2.3, we
would also have

µn(f1) ⩽ µn(f) +K2(K1 + 1)η ⩽ 1 − κ+K2(K1 + 1)η < 1 − κ+K3η.

This is a contradiction, thus (2.16) is checked.
We now conclude using (2.16). Suppose that a continuous piecewise ge-

odesic curve α ⊂ S+ joins f to f ′ ∈ S+ and has length less than a small
number η. Let u⃗ be a unit tangent vector of α at a point of α. By (2.6),
(2.8), (2.14) and (2.16),

|dBar(u⃗)| ⩽
(

4n
(n− 1)2

)1/2
+ cη

where cη is a constant depending only on η > 0 such that limη→0 cη = 0. We
choose η small enough and we integrate the previous inequality from f to
f ′ along the points of α where the tangent vector exists and the differential
of Bar is well-defined. We readily obtain the desired conclusion:

lengthg0(Bar(α)) ⩽
((

4n
(n− 1)2

)1/2
+ cη

)
length(α). □

3. The spherical Plateau problem

3.1. Setup and main definitions

Let Γ be a countable group. Let ℓ2(Γ) be the space of ℓ2 real functions
on Γ. Set

S∞ := {f : Γ → R; ∥f∥ℓ2 = 1} .
Note that S∞ may be finite dimensional, and that S∞ implicitly depends
on Γ. The ℓ2-norm induces a Riemannian metric gHil on the unit sphere S∞.
The group Γ acts isometrically on S∞ by the (left) regular representation:
for all γ ∈ Γ, x ∈ Γ, f ∈ S∞,

(λΓ(γ).f)(x) := f
(
γ−1x

)
.

Denote by (
S∞/λΓ(Γ),gHil

)
the corresponding spherical quotient with the quotient metric. The action
of Γ on S∞ is not free exactly when Γ has torsion elements. When Γ is
torsion-free and non-trivial, then it is not hard to check that S∞ is an
infinite-dimensional contractible sphere, Γ acts properly freely on S∞ by
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the regular representation and the quotient space S∞/λΓ(Γ) is in fact a
classifying space for Γ (namely a K(Γ, 1) space).

Let n ⩾ 0 be an integer. Consider the following homology groups defined
using integral currents:

Zn(S∞/λΓ(Γ)) := {T ; T is an integral n-current with
compact support in S∞/λΓ(Γ)},

Bn(S∞/λΓ(Γ)) := {∂D; D is an integral (n+ 1)-current with
compact support in S∞/λΓ(Γ)},

Hn(S∞/λΓ(Γ)) := Zn(S∞/λΓ(Γ))/Bn(S∞/λΓ(Γ)).

There is a natural morphism

π̂ : H∗(Γ;Z) → H∗(S∞/λΓ(Γ))

where H∗(Γ;Z) are the singular homology groups of the group Γ with
coefficients in Z. Given a group homology class h ∈ Hn(Γ;Z), consider
the space

C (h)

of boundaryless n-dimensional integral currents with compact supports in-
side S∞/λΓ(Γ) which represent the homology class π̂(h) ∈ Hn(S∞/λΓ(Γ));
a more careful definition of π̂ and C (h) is given in Subsection 3.2. For sim-
plicity, we will sometimes call these currents “cycles representing h”. Recall
that the notion of mass M for an integral current is reviewed in Section 1.
We define the spherical volume of a group homology class as follows:

Definition 3.1 (Spherical volume). — Let h ∈ Hn(Γ;Z). The spherical
volume of h is defined as

SphereVol(h) = inf{M(C); C ∈ C (h)}.

This is a homological generalization of the spherical volume first in-
troduced by Besson–Courtois–Gallot in the Riemannian setting [14, Sec-
tion 3, I]. The reader can learn in the survey of Kotschick [38, Section 2]
that this invariant is closely related to a plethora of other fundamental
invariants like the simplicial volume, minimal volume, minimal volume en-
tropy. . . Besides, this invariant can be computed in special cases, as will
be explained in Sections 4 and 5.

We can now define spherical Plateau solutions:
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Definition 3.2 (Spherical Plateau Solution). — We call spherical Pla-
teau solution for h any n-dimensional integral current space C∞ which is
the limit in the intrinsic flat topology of a sequence {Ci} ⊂ C (h) such that

lim
i → ∞

M(Ci) = SphereVol(h).

The spherical Plateau problem consists of studying spherical Plateau
solutions and their relation to the original pair (Γ, h).

Note that spherical Plateau solutions C∞ for a group homology class
h always exist by the compactness theorem of Wenger [53, Theorem 4.19],
[58] which serves as a replacement for the compactness theorem of Federer–
Fleming in finite dimensions (it suffices to check that given Ci as in the
above definition, their masses as well as their diameters are uniformly
bounded). Any spherical Plateau solution C∞ is an integral current space
without boundary, with uniformly bounded diameter. The mass of C∞ sat-
isfies

M(C∞) ⩽ SphereVol(h)

by lower semicontinuity of the mass under instrinsic flat convergence [53,
Theorem 4.6]. However the converse is unclear:

Question 1 (Volume convergence). — Given a group homology class h
and a spherical Plateau solution C∞ for h, is it always true that

M(C∞) = SphereVol(h)?

An n-dimensional integral current without boundary S in a complete
metric space (E, d) is called mass-minimizing if for any (n+1)-dimensional
integral current D supported in (E, d), M(S) ⩽ M(S + ∂D). In striking
contrast with the finite dimensional compact case, there is no non-trivial
mass-minimizing integral current without boundary inside the manifold
S∞/λΓ(Γ) when Γ is torsion-free. In particular, a spherical Plateau solution
C∞ for h is in general not isometrically embedded inside S∞/λΓ(Γ) as a
cycle in C (h). That fact follows from the existence of a distance decreasing
flow on the subset of nonnegative functions of S∞/λΓ(Γ), as explained in
Remark 3.4. This raises the following:

Question 2 (Variational structure). — Does any spherical Plateau solu-
tion isometrically embed as a mass-minimizing integral current in a quotient
of a Hilbert unit sphere?

Instead of focusing on a fixed spherical Plateau solution, for a given di-
mension, one can instead look at the set of all spherical volumes of group
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homology classes, and the space of all spherical Plateau solutions. In Sec-
tion 6, we will establish the existence of accumulation phenomena for spher-
ical Plateau solutions in all dimensions at least 4.

Remark 3.3. — All the above definitions for the spherical Plateau prob-
lem can be extended or modified to study general orthogonal representa-
tions different from the regular representation.

3.2. Definition of C (h).

Consider a countable group Γ. Let us say more about the natural map

(3.1) π̂ : H∗(Γ;Z) → H∗ (S∞/λΓ(Γ)) .

If Γ is finite, there is a point in the finite dimensional sphere S∞ which is
fixed by the whole group Γ so it is natural to define π̂ to be the trivial map
sending everything to {0}. Assume that Γ is infinite. In that case, set

S∞,∗ := {x ∈ S∞; there is no g ̸= 1 such that λΓ(g)x = x} .

Then one can check that the restriction of the action of Γ on S∞,∗ is proper
free, S∞,∗ is still weakly contractible (i.e. all the higher homotopy groups
are trivial) and S∞,∗/λΓ(Γ) is a non-complete, infinite-dimensional, Hilbert
Riemannian manifold and a classifying space for Γ. Since S∞,∗/λΓ(Γ) is
an open Riemannian manifold, it is well-known that H∗(S∞,∗/λΓ(Γ)) is
isomorphic to the singular homology groups H∗(S∞,∗/λΓ(Γ);Z) [47]. Recall
that for any classifying space BΓ, by definition

H∗(Γ;Z) = H∗(BΓ;Z).

Then we set

π̂ : H∗(Γ;Z) = H∗ (S∞,∗/λΓ(Γ);Z) = H∗ (S∞,∗/λΓ(Γ)) → H∗ (S∞/λΓ(Γ))

where the last arrow is induced by the inclusion map S∞,∗/λΓ(Γ) ⊂ S∞/

λΓ(Γ). When Γ is torsion-free infinite, π̂ is an isomorphism because S∞,∗/

λΓ(Γ) = S∞/λΓ(Γ).
Let h ∈ Hn(Γ;Z). Our definition of the family of cycles C (h) is then the

following:

C (h) := {integral currents with compact support in S∞/λΓ(Γ)
representing the class π̂(h) ∈ Hn(S∞/λΓ(Γ))} .
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3.3. Basic examples

3.3.1. Manifolds

To any smooth closed oriented n-manifold M corresponds a spherical
Plateau problem. Indeed, let Γ := π1(M). By elementary topology, there
is a canonical homotopy class of continuous maps from M to a classifying
space BΓ for Γ which induces an isomorphism on fundamental groups. This
homotopy class determines a unique homology class

hM ∈ Hn(Γ;Z) = Hn(BΓ;Z)

called the induced class. Often we will make use of the following notation

SphereVol(M) := SphereVol(hM ),

and the spherical Plateau solutions for hM will alternatively be called spher-
ical Plateau solutions for M .

One could hope that the area-minimization process in the spherical
Plateau problem “simplifies” the topology of M .

Question 3 (Complexity). — How does the topological complexity of a
closed oriented manifold M compares with that of its spherical Plateau
solutions?

Question 4 (Stabilization). — Consider a closed oriented manifold M

and its induced homology class hM ∈ Hn(Γ;Z). How do SphereVol(mhM )
and its corresponding spherical Plateau solutions behave with respect to
the integer M? What are the properties of limm→∞

1
m SphereVol(mhM )?

For related results about multiples of homology classes in finite-dimen-
sional Riemannian manifolds, see [28, 40, 41, 43, 60]. For progress on similar
questions for the volume entropy, see [8] and references therein.

3.3.2. Amenable groups

Suppose Γ is finite and let h ∈ Hn(Γ;Z). Then by definition of C (h)
(see Subsection 3.2), the zero integral current in S∞/λΓ(Γ) is in C (h), so
SphereVol(h) = 0.

If Γ = Z and h ∈ H1(Γ;Z) (for instance if M = S1 and h = hM ),
then SphereVol(h) = 0 and the only spherical Plateau solution is the zero
integral current space. To see this, one can represent h by a disjoint union
of embedded oriented loops c1, . . . , cL ⊂ S∞/λΓ(Γ), where each ci is the
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projection of some segment in S∞ joining an element f to γi.f where
γi ∈ Γ depends on ci. Now one can separately move each ci homotopically
to a curve of arbitrarily small length, since for each i there is fi such that
∥fi − γi.fi∥ℓ2 is arbitrarily small.

In fact, these arguments can be generalized to any amenable groups
thanks to the so-called Dixmier condition: a finitely generated group Γ is
amenable if and only if for any ϵ > 0 and any finite subset S ⊂ Γ, there is
u ∈ S∞ such that ∥s.u− u∥ℓ2 ⩽ ϵ for all s ∈ S.

In particular it is possible to show that if Γ is amenable, then SphereVol
(h) = 0 for all h ∈ H∗(Γ;Z). With a bit more work, one can work out
a vanishing theorem analogous to the vanishing theorem for the simplicial
volume due to Gromov [33, Section 3.1]. In that sense the spherical Plateau
problem, like many geometric invariants (simplicial volume, volume entropy
etc.), is only sensitive to “large” groups.

Question 5 (Vanishing of spherical volume). — What are useful charac-
terizations of group homology classes with vanishing spherical volume?

3.4. Some distance non-increasing maps

In this subsection, we collect some useful distance non-increasing maps.

3.4.1. Group homomorphisms

Let F,G be countable groups with regular representations λF , λG, and a
homomorphism θ : F → G. The homomorphism θ induces a map sending
u ∈ ℓ2(F ) to Θ(u) ∈ ℓ2(G) defined by

(3.2) Θ(u)(y) :=


( ∑

x ∈ θ−1(y)
|u(x)|2

)1/2

if y ∈ θ(F )

0 if y /∈ θ(F )
.

By Cauchy–Schwarz, this map is distance non-increasing. One checks di-
rectly that this map is also F -equivariant, which implies that there is an
induced map

Θ : S∞/λF (F ) → S∞/λG(G)
which is still distance non-increasing.

Now let h ∈ Hn(F ;Z) and let θ∗(h) ∈ Hn(G;Z) be the class equal to the
push-forward of h by θ. From the above, one can show that:

(3.3) SphereVol(h) ⩾ SphereVol(θ∗(h)).
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3.4.2. Absolute value

Let Γ be countable, h ∈ Hn(Γ;Z). By a similar argument using Cauchy–
Schwarz, note that there is a distance non-increasing equivariant map

A : S∞ → S∞

u 7→ |u|,
which descends to a distance non-increasing map

(3.4) A : S∞/λΓ(Γ) → S∞/λΓ(Γ).

3.4.3. Spherical convolution

Suppose here that Γ is countably infinite and has no torsion. Let η̃ : Γ →
[0, 1] be a function with

∑
γ η̃(γ) = 1, and suppose also that η̃ is strictly

positive everywhere. The “spherical convolution” of f0 by η̃ is defined as

η̃ ⋆ f0(γ) :=

∑
γ′

|f0(γ′)|2 η̃
(
γ′−1γ

)1/2

.

Whenever f0 ̸≡ 0, η̃ ⋆ f0 has support the whole group Γ. By Cauchy–
Schwarz,

(3.5) ⋆η̃ : f0 7→ η̃ ⋆ f0

is a Γ-equivariant distance non-increasing map which preserves the ℓ2 norm
of functions (essentially this is the discrete version of [15, Remarque 2.7]).
Hence ⋆η̃ induces a well-defined distance non-increasing map from S∞/

λΓ(Γ) to itself, homotopic to the identity. Importantly, one checks that ⋆η̃

is differentiable on S∞, and its differential strictly decreases the norm of
any tangent vector at any point of S∞. In particular, ⋆η̃ is strictly distance
decreasing.

Remark 3.4. — Why is the intrinsic flat topology needed? When defin-
ing spherical Plateau solutions, one might hope that they are embedded in
the spherical quotient S∞/λΓ(Γ), but this is not possible for the following
reason. Consider any non-zero integral current C ∈ C (h) in the spheri-
cal quotient S∞/λΓ(Γ), where Γ is infinite torsion-free and h ∈ Hn(Γ;Z).
By applying the spherical convolution ⋆η̃ with η̃ as above, we get a cur-
rent (⋆η̃)♯(C) which still belongs to C (h) but with strictly smaller mass
by the area formula reviewed in Subsection 1.4. As a consequence, when-
ever h is nonzero, no element of C (h) can actually achieve the equality
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M(C) = SphereVol(h). More generally, this argument shows that there
is no non-trivial mass-minimizing integral current in S∞/λΓ(Γ)! This ex-
plains why notions such as “intrinsic flat convergence”, “integral current
spaces” [53] or “ultralimit” are necessary in formulating the spherical Pla-
teau problem.

3.5. Besson–Courtois–Gallot’s definition of the spherical volume

There are several natural ways to define the setup for the spherical
Plateau problem. Conjecturally, many of those setups lead to equivalent
notions of spherical volume and spherical Plateau solutions, whenever they
make sense. In this subsection, we recall the original setup of Besson–
Courtois–Gallot in the case of smooth manifolds, which inspired the defi-
nition of the spherical Plateau problem.

Let (M, g) be a closed, oriented, smooth Riemannian n-manifold with
fundamental group Γ := π1(M), let (M̃, g) be its universal cover. Let DM ⊂
M̃ be a Borel fundamental domain and let S2(M̃, g) be the unit sphere of
L2(M̃, g), endowed with the standard metric gL2(M̃,g). There is a natural
action λ(M̃,g) of Γ by isometries on S2(M̃, g), and changing the metric
g yields Γ-equivariantly isometric spaces, see [14, Section 3, I]. Besson–
Courtois–Gallot [14, Section 3, I] defined the spherical volume of M as

SphereVolBCG(M) := inf
{

Vol
(
DM , ϕ∗gL2(M̃,g)

)
;

ϕ : M̃ → S2

(
M̃, g

)
is a Γ-equivariant immersion

}
.

In fact, we could have used S∞ ⊂ ℓ2(Γ), the regular representation λΓ, and
Γ-equivariant smooth maps, instead of respectively S2(M̃, g) ⊂ L2(M̃, g),
λ(M̃,g), and Γ-equivariant immersions, without changing the value of
SphereVolBCG(M).

By [14], the simplicial volume [33] of a closed oriented n-manifold M is
related to the spherical volume of Besson–Courtois–Gallot by

∥M∥ ⩽ Cn SphereVolBCG(M).

It is not hard to see that

SphereVolBCG(M) ⩾ SphereVol(M).

If the fundamental group Γ is torsion-free, it is possible to show that equal-
ity holds: this non-trivial result is essentially contained in [9, Lemma 3.10]
[18, Section 2] when the dimension of M is at least 3.
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Question 6 (Equivalence of definitions). — Do we always have

SphereVolBCG(M) = SphereVol(M)?

3.6. Intrinsic isomorphism

It is sometimes natural and helpful to consider spherical Plateau solutions
up to “intrinsic isomorphism”, and discard some of the non-infinitesimal
information. Indeed under such an equivalence relation, uniqueness and
rigidity properties emerge naturally, as we will see in Sections 4, 5 and 6.
Given a metric space (X, d), the intrinsic metric on X induced by d is
denoted by Ld [19, Chapter 2, Section 2.3]. By convention, the Ld-distance
between points of different path connected components of (X, d) is ∞. Note
that the identity map

id : (X,Ld) → (X, d)
is always 1-Lipschitz.

Consider an integral current space C = (X, d, T ) and an oriented com-
plete finite volume Riemannian manifold (N, gN ) which is not necessarily
connected, which induces the integral current space (N, distgN

, [[1N ]]).
Definition 3.5. — We say that C = (X, d, T ) is intrinsically isomor-

phic to (N, gN ). if there is an isometry

φ : (N, distgN
) → (X,Ld)

such that
(id ◦φ)♯[[1N ]] = T.

One could try to formulate more general definitions of the type “Two
integral current spaces are intrinsically isomorphic if. . . ”. For clarity, we
emphasize that “intrinsically isomorphic” does not imply “at intrinsic flat
distance 0 from each other”.

4. Spherical Plateau solutions for hyperbolic manifolds

In this section, we review how Besson–Courtois–Gallot compute the
spherical volume of hyperbolic manifolds and how it is used in their proof
of the volume entropy inequality. Then we outline a proof of our first main
theorem, the uniqueness of spherical Plateau solutions for hyperbolic man-
ifolds, up to intrinsic isomorphism. This result in turn leads to a new area
rigidity property for the regular representation of fundamental groups of
hyperbolic manifolds. All those discussions can be adapted to the general
rank one locally symmetric case.
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4.1. The spherical volume of hyperbolic manifolds

The spherical volume of closed oriented hyperbolic manifolds was com-
puted by Besson–Courtois–Gallot. For completeness, we outline their proof
in our setting when the dimension is at least 3.

Theorem 4.1 ([15, 16]). — Let (M, g0) be a closed oriented hyperbolic
manifold of dimension at least 3. Then

(4.1) SphereVol(M) = Vol
(
M,

(n− 1)2

4n g0

)
.

Proof. — Let us sketch the proof, which is due to Besson–Courtois–
Gallot [15, Sections 5 and 6]. Suppose that the dimension of M is at least 3,
let Γ := π1(M) and let hM ∈ Hn(Γ;Z) be the induced homology class.

Let C ∈ C (hM ) be a cycle in S∞/λΓ(Γ) representing hM . It is convenient
to consider cycles which are polyhedral chains. Recall from Lemma 1.6 that
C can be nicely approximated by a polyhedral chain P ∈ C (hM ). Moreover,
by a further perturbation if necessary, we get another polyhedral chain
P ′ ∈ C (hM ) so that spt(P ′) ⊂ S+/λΓ(Γ) where S+ is the set of functions
with finite support (see Section 2). Afterwards, we will assume without loss
of generality that C is such a polyhedral chain.

Fix a point o ∈ M̃ in the universal cover of M , and let p ∈ M be its
projection in M . Let

Bar : S+/λΓ(Γ) → M

be the barycenter map whose definition is given in Section 2. Recall that
the restriction of Bar to C is a Lipschitz map. By Γ-equivariance of Bar :
S+ → M̃ ,

(4.2) Bar♯(C) = [[1M ]].

For almost every point q ∈ spt(C), C admits a tangent n-plane at q. The
n-dimensional Jacobian of Bar along the tangent n-plane is well-defined
and is bounded from above by

( 4n
(n−1)2

)n/2 thanks to (2.11) in Lemma 2.4.
This implies by (4.2) and the area formula in Subsection 1.4 that

M(C) ⩾
(

(n− 1)2

4n

)n/2

Vol(M, g0).

Since C ∈ C (hM ) has mass arbitrary close to SphereVol(M), we conclude
that

SphereVol(M) ⩾ Vol
(
M,

(n− 1)2

4n g0

)
.
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The inverse inequality

SphereVol(M) ⩽ Vol
(
M,

(n− 1)2

4n g0

)
directly follows from a general inequality between the spherical volume
and the volume entropy of a closed Riemannian manifold, see [14, Corol-
lary 3.13]. It states that if (M, g) is a closed oriented Riemannian n-
manifold, then

(4.3) SphereVol(M) ⩽ Vol
(
M,

h(g)2

4n g

)
where h(g) is the volume entropy of the Riemannian metric g (in [14,
Section 3, I], SphereVol(M) is denoted T (M)). The proof of (4.3) is based
on the following maps. Denote by DM a Borel fundamental domain in the
universal cover M̃ for the action of Γ and let γ.DM be its image by an
element γ ∈ Γ. For c > h(g), defined the equivariant map

(4.4) Pc : M̃ → S∞ ⊂ ℓ2(Γ)

x 7→

γ 7→ 1∥∥e− c
2 distg(x,.)

∥∥
L2(M̃,g)

[∫
γ.DM

e−c distg(x,u) dvolg(u)
]1/2

 .

Properties of Pc [14, Proof of Lemma 3.1] [51, Lemma 3.1] imply that

lim inf
c→h(g)

M
(
(Pc)♯[[1M ]]

)
⩽

h(g)n

2nnn/2 Vol(M, g).

Since by equivariance, (Pc)♯[[1M ]] belongs to C (hM ), the above inequality
shows (4.3). □

The analogue of Theorem 4.1 for closed oriented surfaces was shown
in [14, Proposition 3.9] by methods specific to the 2-dimensional case. The-
orem 4.1 also extends directly to rank one (i.e. negatively curved) locally
symmetric manifolds [15, 16, 48]. As for higher rank locally symmetric
manifolds, following the logic of Besson–Courtois–Gallot [15] (see Sub-
section 4.2), a big step towards the entropy rigidity conjecture in higher
rank [16, Question (5)], [21] would be the computation of their spherical
volumes:

Question 7 (Spherical volume in higher rank). — What is the spherical
volume of a closed oriented locally symmetric manifold of higher rank?
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4.2. From spherical volume to volume entropy and back again

Given a closed manifold M , if g is a Riemannian metric on M , let h(g)
denote its volume entropy:

(4.5) h(g) := lim
R→∞

log Vol(B̃g(o,R))
R

where (B̃g(o,R)) denotes the geodesic R-ball centered at some point o in
the universal cover (M̃, g) of (M, g). The fundamental volume entropy in-
equality for hyperbolic manifolds [15, 16] states that if (M, g0) is a
hyperbolic manifold of dimension n ⩾ 2, and if g is any other metric on
M , then

h(g)n Vol(M, g) ⩾ h(g0)n Vol(M, g0).
Equivalently, if g is normalized to have volume entropy h(g0), then

(4.6) Vol(M, g) ⩾ Vol(M, g0).

Moreover when n ⩾ 3, equality holds exactly when g is isometric to g0.
A slight extension of this theorem implies the classical Mostow’s rigidity
theorem [15].

Nowadays, the proof of Besson–Courtois–Gallot [15, 16] in the case n ⩾ 3
is primarily remembered for their barycenter map. Yet, a pivotal insight in
the original paper [15] is that determining the minimal volume entropy of
hyperbolic manifolds can be reduced to the computation of their spherical
volume. This aspect of their work is rooted in the theory of minimal surfaces
and calibrations, and should be recalled. We can summarize their strategy
as follows. Let M be as before and let Γ := π1(M). If (M, g) is normalized
so that h(g) = h(g0) = n − 1, then by using properties of the maps Pc

defined in (4.4) for c > h(g0) [14, Proof of Lemma 3.1], [51, Lemma 3.1],
the image Pc(M) inside S∞/λΓ(Γ) has volume at most cn

2nnn/2 Vol(M, g).
But since Pc(M) determines a cycle in C (hM ), by Theorem 4.1, the volume
of Pc(M) is at least the spherical volume (n−1)n

2nnn/2 Vol(M, g0). As c can be
taken arbitrarily close to n− 1, we find that (4.6) is true. The rigidity part
is shown as follows: if equality holds, then as c → n − 1, the composition
Bar ◦ Pc is almost a Riemannian isometry and converges to a Riemannian
isometry, so in the limit we conclude that g is isometric to g0.

Actually, the summary above deviates a bit from the original presentation
of Besson–Courtois–Gallot: in [15], the authors use a spherical quotient
different from the quotient S∞/λΓ(Γ) that we chose to work with, and
they use an explicit minimal isometric embedding of (M, (n−1)2

4n g0) into that
spherical quotient. Let us describe those geometric objects. Consider the
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universal cover (M̃, g0) with the hyperbolic metric. Fix a basepoint o ∈ M̃ ,
let ∂M̃ be the boundary at infinity of M̃ with the standard probability
measure determined by o, and let S2(∂M̃) be the unit sphere in L2(∂M̃).
For any θ ∈ ∂M̃ , the corresponding Busemann function is defined for any
x ∈ M̃ as

Bθ(x) := lim
t→∞

(
distg0(y, c(t)) − t

)
where c : [0,∞) is the half-geodesic starting at o, and converging to θ. The
group Γ acts naturally on M̃ and ∂M̃ . There is also a natural proper, free,
isometric action ρB of Γ on S2(∂M̃) given, for all γ ∈ Γ, f ∈ S2(∂M̃), by

(4.7) ρB(γ).f(θ) = f
(
γ−1(θ)

)
e− n−1

2 Bθ(γ(o)),

see [15, Lemme 2.2]. This action ρB is also called a boundary representa-
tion of Γ. It is possible to show that the spherical quotient S2(∂M̃)/ρB(Γ)
is not isometric to our spherical quotient S∞/λΓ(Γ) defined with the regu-
lar representation of Γ. Nevertheless, these two spaces are closely related,
as S2(∂M̃)/ρB(Γ) is contained in the “ultralimit of S∞/λΓ(Γ)”. (see [26,
Chapter 10], for the definition of ultralimit of a sequence of metric spaces).

Consider the following embedding

P :
(
M̃,

(n− 1)2

4n g0

)
→ S2(∂M̃)

P(x) :=
{
θ 7→ e− n−1

2 Bθ(x)
}
.

(4.8)

It is not too hard to check that P is an isometric and minimal embedding.
As explained in [15, Section 2], this map is equivariant, and so after taking
the quotient by Γ and rescaling the metric g0, we get a map

P :
(
M,

(n− 1)2

4n g0

)
→ S2(∂M̃)/ρB(Γ).

Again, this P is an isometric and minimal embedding. Strikingly, Be-
sson–Courtois–Gallot discovered [15, Proposition 5.7, Section 6] that P(M)
is an area-minimizing n-submanifold of the Hilbert Riemannian manifold
S2(∂M̃)/ρB(Γ), by arguing that P(M) is in fact a calibrated submanifold.
When n ⩾ 3, the calibration is essentially constructed as the pull-back of
the volume form on (M, g0) by a barycenter map

Bar : S2(∂M̃)/ρB(Γ) → (M, g0).

Now, here is the relevance of P(M) and our discussion about the spher-
ical Plateau problem. If g = g0 then the image Pc(M) in S∞/λΓ(Γ) has
volume converging to the spherical volume (n−1)n

2nnn/2 Vol(M, g0) as c → n− 1.
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It can be shown that, as integral currents, Pc(M) converges in the intrin-
sic flat topology to P(M). With the vocabulary of Section 3, this means
that there is an explicit minimizing sequence of cycles in C (hM ) inside
S∞/λΓ(Γ) converging to a spherical Plateau solution which is given by
P(M). Is P(M) the only spherical Plateau solution up to isomorphism
when n ⩾ 3 (see Question 8)? We will show in Theorem 4.2 that it is the
unique one at least up to instrinsic isomorphism.

4.3. Intrinsic uniqueness and rigidity of spherical Plateau
solutions

We now come to our first new result, which states that spherical Plateau
solutions are unique for hyperbolic manifolds, up to intrinsic isomorphism
(see Definition 3.5):

Theorem 4.2. — Let (M, g0) be a closed oriented hyperbolic manifold
of dimension n ⩾ 3. Then any spherical Plateau solution for M is intrinsi-
cally isomorphic to (M, (n−1)2

4n g0).

Outline of proof. — Let Γ := π1(M), and let hM ∈ Hn(Γ;Z) be the
fundamental homology class, where n ⩾ 3 is the dimension of M . Let
Ci ∈ C (hM ) be a minimizing sequence, namely

(4.9) lim M(Ci) = SphereVol(M) = Vol
(
M,

(n− 1)2

4n g0

)
.

The second equality above is Theorem 4.1. By Lemma 1.6, as in the proof
of Theorem 4.1, we can assume Ci to be polyhedral chains, with support
in S+/λΓ(Γ), where S+ is the set of functions with finite support.

We assume that Ci converges to a spherical Plateau solution

C∞ = (X∞, d∞, S∞) .

We use the notation
g′ := (n− 1)2

4n g0.

Jacobians, lengths and distances will be computed with respect to g′. Fix
o ∈ M̃ a point in the universal cover. Let

Bar : spt(Ci) ⊂ S+/λΓ(Γ) → M

be the barycenter map defined in Section 2.
The Jacobian bound (2.11) on the barycenter map in Lemma 2.4, (4.2)

and (4.9) imply that, as i → ∞, on a larger and larger region of the
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polyhedral chain spt(Ci), the Jacobian bound is almost tight. In particular
there is a “good region” Ωi ⊂ spt(Ci) such that the mass of Ci⌞Ωi converges
to SphereVol(M), the Jacobian of Bar converges to 1 on Ωi (with respect
to the metric g′), and Bar is injective on Ωi.

The barycenter map Bar : spt(Ci) → M is not uniformly Lipschitz as
i → ∞. Nevertheless, by Lemma 2.4, it is indeed uniformly Lipschitz in
small neighborhoods of Ωi. Besides, it can be shown using Lemma 2.4 that
the barycenter map is almost 1-Lispchitz in small balls near Ωi.

Take Di the restriction of Ci to an r̃-neighborhood of the good region
Ωi ⊂ spt(Ci), for some small fixed r̃ > 0. By construction, Di still converges
in the intrinsic flat topology to C∞. The upshot is that the mass of the
boundary ∂Di converges to 0, the barycenter map restricted to spt(Di) has
a uniform Lipschitz bound and is almost 1-Lispchitz in small balls near Ωi.
Those properties will be important in the next steps.

By the previous paragraph, one can embed the sequence of integral cur-
rents Di in a Banach space where they converge in the flat topology to
C∞ = (X∞, d∞, S∞) viewed as an integral current in that Banach space.
The barycenter map Bar is well-defined on each spt(Di) so by an Arzelá–
Ascoli type argument and the uniform Lipschitz control [52, Theorem 6.1],
there is a natural Lipschitz “limit barycenter map”

Bar∞ : sptS∞ → M

where the support sptS∞ coincides with the completion of (X∞, d∞).
Moreover, by slightly extending [11, Lemma 7.3], it can be shown that

(4.10) (Bar∞)♯S∞ = [[1M ]].

By Lemma 2.4, when the Jacobian bound for the barycenter map is
almost saturated, the differential of Bar is almost a linear isometry. Since
the Jacobian bound for Bar indeed becomes arbitrarily close to the sharp
upper bound on Ωi ⊂ spt(Di) as i → ∞, Bar is almost a Riemannian
isometry for large i. So intuitively, we expect that the differential of the
limit barycenter map Bar∞ is exactly a linear isometry at any point of
sptS∞, namely that Bar∞ is a Riemannian isometry. This would essentially
finish the proof. That sketch would work if the convergence of Ci to C∞
was known to be smooth (at least outside of a small singular set) [13], or
if the limit map was known to be 1-Lipschitz (see for instance for such
Lipschitz-volume rigidity results [11, Theorem 1.1], [13, Sections 3, 4, 5],
[15, Proposition C.1], [25, Theorem 1.1], and [61, Theorem 1.2]). However
in our situation C∞ = (X∞, d∞, S∞) is a priori just an integral current
to which Ci converges weakly, and the limit map is never 1-Lipschitz in
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our case (even though it will be shown a posteriori to be 1-Lipschitz with
respect to the intrinsic metrics).

In order to show that

Bar∞ : sptS∞ → (M, g′)

is an isometry for the respective intrinsic metrics, we work with the maps
Bar : spt(Di) → (M, g′) instead of with the limit map directly. We prove a
general result [51, Proposition 1.4] which roughly says that limits of maps φi

which are uniformly Lipschitz, almost Riemannian isometries, and almost
1-Lipschitz in small balls, are indeed Riemannian isometries. This general
result can be directly applied to the sequence Bar : spt(Di) → (M, g′).
The point of this result is that while the limit map Bar∞ is constructed
using the extrinsic metrics on spt(Di), the intrinsic information about Bar
(namely the fact that it is almost a Riemannian isometry) still passes to
the limit.

Let us make some comments on the proof of [51, Proposition 1.4] in our
specific case. Since Bar is almost 1-Lipschitz in small balls near Ωi, it is
simple to check that Bar∞ is 1-Lipschitz for the intrinsic metric Ld∞ on
sptS∞. Note that we cannot apply Lipschitz-volume rigidity results like [61,
Theorem 1.2], because we do not know if a priori there is an integral current
T on the completion of (sptS∞, L∞) such that (Bar∞)♯T = [[1M ]], and if
volumes for the new metric are preserved. Instead, we argue directly as
follows. We want to show that conversely Bar∞ does not decrease distances
for the intrinsic metrics: given x, y ∈ sptS∞, and a geodesic segment σ
between Bar∞(x) and Bar∞(y) in (M, g′), we want to lift σ to a segment
of same length in sptS∞. Technically, the main tool is the coarea formula
reviewed in Subsections 1.4 and Sard’s lemma. As an application, for each
i, we can perturb a bit σ to a nearby curve σi such that the preimage

κi := Bar−1(σi) ∩ spt(Di)

is a rectifiable curve contained inside spt(Di) of length converging to
lengthg′(σ) as i → ∞. Heuristically, this is because the coarea formula
ensures that most of κi is contained in the good region Ωi, where the dif-
ferential of Bar is almost a linear isometry. Moreover κi is the union of a
segment with two endpoints and some closed curves of small lengths, and
the segment component converges as i → ∞ to a rectifiable segment inside
the support sptS∞ with endpoints x and y, and length equal to lengthg′(σ).

After proving that Bar∞ : sptS∞ → (M, g′) is an isometry for the
respective intrinsic metrics, we can conclude the proof using (4.10) and the
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inverse map φ := (Bar∞)−1 from (M,distg′) to sptS∞ in Definition 3.5.
□

From Theorem 4.2, we deduce the following area rigidity result. Let
(M, g0) be a closed oriented hyperbolic manifold of dimension n ⩾ 3 and
set Γ := π1(M). A fundamental family of representations of Γ is the set of
orthogonal representations ρ : Γ → End(H) which are weakly equivalent to
the regular representation λΓ : Γ → End(ℓ2(Γ)), see [12, Definition F.1.1].
We say(4) that an orthogonal representation ρ : Γ → End(H) is weakly
equivalent to λΓ if the following holds: for every ξ ∈ H, every finite subset
Q of Γ, and every ϵ > 0, there exist η1, ..., ηk in ℓ2(Γ) such that for all
g ∈ Q, ∣∣∣∣∣∣⟨ρ(g)ξ, ξ⟩ −

k∑
j=1

⟨λΓ(g)ηj , ηj⟩

∣∣∣∣∣∣ < ϵ,

and vice versa for every η ∈ ℓ2(Γ), every finite subset Q of Γ, and every
ϵ > 0, there exist ξ1, ..., ξl in H such that for all g ∈ Q,∣∣∣∣∣∣⟨λΓ(g)η, η⟩ −

l∑
j=1

⟨ρ(g)ξj , ξj⟩

∣∣∣∣∣∣ < ϵ,

Now let M̃ be the universal cover of M , on which Γ acts properly freely,
let g0 be the lifted hyperbolic metric on M̃ , and let DM be a Borel funda-
mental domain in M̃ .

Corollary 4.3. — Let SH be the unit sphere in a Hilbert space
(H,gH) and let ρ : Γ → End(H) be an orthogonal representation weakly
equivalent to λΓ. Consider a smooth Γ-equivariant map

f : M̃ → SH .

Then
Vol(DM , f∗gH) ⩾ SphereVol(M),

with equality if and only if (f(M̃),gH) is an embedded n-plane in SH and
is Riemannian isometric to (M̃, (n−1)2

4n g0).

Outline of proof. — Consider the infinite direct sum of the regular rep-
resentation, denoted by

∞⊕
λΓ : Γ → End(

∞⊕
ℓ2(Γ)).

(4) Usually, one considers complex Hilbert spaces and unitary representations but in this
paper we will only consider real Hilbert spaces and orthogonal representations.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



SPHERICAL VOLUME AND SPHERICAL PLATEAU PROBLEM 217

Let (S′,gS′) be the unit sphere of
⊕∞

ℓ2(Γ) with its standard metric. The
natural map

A′ : (a1, a2, ...) ∈ S′ 7→

[∑
i ⩾ 1

a2
i

]1/2

∈ S∞ ⊂ ℓ2(Γ)

is Γ-equivariant and 1-Lipschitz by the argument of Subsection 3.4.2.
The fact that ρ is weakly equivalent to λΓ means that the representation

ρ can be arbitrarily well “approximated” by
⊕∞

λΓ. Hence for any ϵ > 0,
there exists a smooth Γ-equivariant map

fϵ : M̃ → S′

which is ϵ-close to f in the C1-topology, in the sense that

(4.11) ∥f∗
ϵ gS′ − f∗gH∥C0(DM ) ⩽ ϵ.

Consider the Lipschitz Γ-equivariant map

A′ ◦ fϵ : M̃ → S∞ ⊂ ℓ2(Γ)

which after taking the quotient by λΓ(Γ), gives a map

M → S∞/λΓ(Γ).

The image of this map can be identified with a cycle C ∈ C (hM ) whose
mass satisfies, by (4.11) and the 1-Lipschitzness of A′:

(4.12) M(C) ⩽ Vol(DM , f∗gH) + cϵ

for some cϵ converging to 0 as ϵ → 0. This establishes the inequality of the
statement by definition of SphereVol(M).

As ϵ → ∞, the cycle C above converges by construction of fϵ to the
quotient f(M̃)/ρ(Γ) (viewed as an integral current space).

Suppose that equality holds in the statement, namely

Vol(DM , f∗gH) = SphereVol(M).

Then by (4.12), f(M̃)/ρ(Γ) is a spherical Plateau solution, so by the unique-
ness result, Theorem 4.2, we conclude that (f(M̃),gH) is an embedded
n-plane in SH , Riemannian isometric to (M̃, (n−1)2

4n g0) as desired. □

Let us emphasize that, by Subsection 4.2, Corollary 4.3 formally implies
the entropy inequality and rigidity theorem of Besson–Courtois–Gallot [15].
We may in fact hope for a much stronger “extrinsic area rigidity” for ρ in the
equality case of Corollary 4.3: ρ should contain as a subrepresentation the
boundary representation ρB defined in (4.7), and f(M̃) should be equal to
the special minimal n-plane P(M̃) defined in (4.8) up to an isometry of the
ambient unit sphere. An analogous extrinsic area rigidity property should
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hold for hyperbolic surfaces, by considering the energy of harmonic maps,
instead of the area of n-dimensional minimal surfaces. See Questions 8
and 9 below for a formulation of those conjectures in terms of spherical
Plateau solutions.

Details for the proof of Theorem 4.2 appear in [51], where for simplicity
we use a more specialized definition of spherical Plateau solutions. All the
arguments above extend to the locally symmetric case of rank one, by [15,
16, 48], and so we obtain:

Theorem 4.4. — If (M, g0) is a closed oriented locally symmetric man-
ifold of dimension at least 3, with negative curvature between −4 and −1,
then any spherical Plateau solution for M is intrinsically isomorphic to
(M, h(g0)2

4n g0).

The spherical Plateau solutions in Theorem 4.4 are probably unique, i.e.
up to isomorphism and not just up to intrinsic isomorphism. The following
Rigidity Conjecture is perhaps the main question of this paper. Consider
(M, g0), a closed oriented locally symmetric manifold of rank one of dimen-
sion at least 3 and with fundamental group Γ.

Question 8 (Uniqueness). — Does M have a unique spherical Plateau
solution up to isomorphism? Does extrinsic area rigidity hold for represen-
tations ρ weakly equivalent to the regular representation λΓ?

For closed oriented surfaces Σ of genus at least 2, spherical Plateau so-
lutions are non-unique. Indeed each hyperbolic metric on Σ, after being
rescaled by 1

8 , is intrinsically isomorphic to a spherical Plateau solution.
Conjecturally, this is essentially the only source of non-uniqueness. While
the barycenter map is not useful for surfaces, the calibration constructed
in [15, Section 6] hints at a general classification. Let Σ be a closed oriented
surface of genus at least 2, with fundamental group Γ.

Question 9 (Classification for surfaces). — Can one classify the spherical
Plateau solutions for Σ? Does extrinsic area rigidity hold for representations
ρ weakly equivalent to the regular representation λΓ?

5. Spherical Plateau solutions for 3-dimensional manifolds

5.1. The spherical volume of 3-manifolds

By the Geometrization theorem [37, 44], any closed oriented 3-manifold
M is decomposable into a connected sum of irreducible 3-manifolds
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Y1, . . . , Ym, each of which is divided into a hyperbolic part and a graph
manifold (each part could be empty). The disjoint union of the hyperbolic
pieces is called the hyperbolic part of M and denoted by Mhyp. Its com-
plete finite volume hyperbolic metric is called ghyp. The hyperbolic part
(Mhyp, ghyp) is up to isometry canonically determined by M . We start with
the analogue of Theorem 4.1:

Theorem 5.1. — Let M be a closed oriented 3-manifold and let
(Mhyp, ghyp) be its hyperbolic part with its hyperbolic metric. Then

SphereVol(M) = Vol
(
Mhyp,

1
3ghyp

)
.

Outline of proof. — The proof results from a combination of ideas due
to Besson–Courtois–Gallot, Souto and Pieroni [14, 15, 46, 54]. Let M be
a closed oriented 3-manifold. By the Geometrization theorem, it is known
that M is the connected sum of irreducible manifolds Y1, . . . , Ym such
that each Yj is decomposed, after cutting along a disjoint collection of
essential tori, into hyperbolic pieces and Seifert pieces (such pieces could
be empty). Let Y1, . . . , Yk (k ∈ {1, . . . , m}) be the summands with a non-
empty union of hyperbolic JSJ components called Hj ⊂ Yj . The manifold
Hj is not necessarily connected and if non-empty, Yj\Hj is a graph manifold
with boundary. Let gj,hyp be the complete finite volume metric on Hj . The
disjoint union of Hj is the hyperbolic part of M and is denoted by Mhyp.

In [46, Theorem 3.1, Theorem 3.13], for any small δ̂ > 0, a nonpositively
curved metric gj,δ̂ approximating the hyperbolic metric ghyp is constructed
on Yj for j ∈ {1, . . . , k}: there is in particular a region Rj ⊂ Yj such that
gj,δ̂ is a hyperbolic metric on the 1

δ̂
-neighborhood of Rj in Yj with respect

to gj,δ̂, and

(5.1) Vol (Hj , gj,hyp) − Vol
(

Rj , gj,δ̂

)
⩽ δ̂.

Accordingly, a metric space (X,dδ̂) obtained by attaching Y1, . . . , Yk at a
common point p and collapsing the other summands Yk+1, . . . , Ym to p
is defined in [46, Section 6]. By a slight abuse of notations, we consider
Y1, . . . , Yk as subsets of X. Set

Γ := π1(X).

Let X̃ be the universal cover, endowed with the induced distance denoted
by d̃δ̂ and let o ∈ X̃ be a reference point projecting to p ∈ X. Except at
countably many points of X̃ corresponding to the lifts of p, d̃δ̂ is in fact
given by the path metric of a smooth Riemannian metric, and moreover
(X̃, d̃δ̂) is a CAT(0) space.
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There is a variant of the barycenter map corresponding to Γ, (X̃, d̃δ̂)
with properties completely similar to those stated in Section 2:

Bar : S+/λΓ(Γ) →
(
X,dδ̂

)
.

In particular this map enjoys a Jacobian bound of the type

|Jac Bar| ⩽ 1 + error(δ̂)

with respect to the metric 1
3 dδ̂, along any totally geodesic 3-simplex S in

S+/λΓ(Γ), and at any point in S which is sent inside
⋃

j Rj \ {p}. The
error converges to 0 as δ̂ goes to 0.

Let ΓM := π1(M) and hM ∈ H3(ΓM ;Z) the induced class. The natural
homomorphism θ : ΓM → Γ induces a 1-Lipschitz map

Θ : S∞/λΓM
(ΓM ) → S∞/λΓ(Γ),

see Subsection 3.4.
Let C ∈ C (hM ). As before, by Lemma 1.6, one can assume that C is

a polyhedral chain and each point of its support lifts to an ℓ2 function
with finite support in ΓM . Then Θ(spt(C)) ⊂ S+/λΓ(Γ). An arbitrarily
small perturbation of Θ, still denoted by Θ for simplicity, makes Θ♯(C) a
polyhedral chain in S+/λΓ(Γ). Set

B̃ar := Bar ◦ Θ.

By Γ-equivariance, B̃ar♯(C) = [[1M ]]. Note that B̃ar depends on C because
of the perturbation of Θ but this dependence will not play a role later.

As in the proof of Theorem 4.1, the Jacobian bound for the barycenter
map implies by the area formula of Subsection 1.4 that for all ϵ > 0,
whenever δ̂ is small enough,

M(C) ⩾
(

1
3

)3/2 k∑
j=1

Vol
(

Rj , gj,δ̂

)
− ϵ

⩾

(
1
3

)3/2 k∑
j=1

Vol (Hj , gj,hyp) − 2ϵ.

Since C ∈ C (hM ) was arbitrary, by sending δ̂ → 0 we get

SphereVol(M) ⩾
k∑

j=1
Vol

(
Hj ,

1
3gj,hyp

)
= Vol

(
Mhyp,

1
3ghyp

)
.

As for the reverse inequality

SphereVol(M) ⩽ Vol
(
Mhyp,

1
3ghyp

)
,
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in view of [14, Corollary 3.13] (see (4.3) in the proof of Theorem 4.1), one
just needs to exhibit a metric on M with volume entropy close to 2 and
volume close to that of the hyperbolic part. In [46, Theorem 4.1](5) the
author constructs a metric gδ̂ on M depending on δ̂, with the property
that, as δ̂ → 0,

• Vol(M,gδ̂) converges to
∑k

j=1 Vol(Hj , gj,hyp) = Vol(Mhyp, ghyp),
• the volume entropy h(gδ̂) converges to 2.

This finishes the outline. □

5.2. Intrinsic uniqueness of spherical Plateau solutions

In the main theorem of this section, we interpret the hyperbolic part of
a closed oriented 3-manifold as its unique spherical Plateau solution, up to
intrinsic isomorphism.

Theorem 5.2. — Let M be a closed oriented 3-manifold, whose hyper-
bolic part is denoted by (Mhyp, ghyp). Then any spherical Plateau solution
C∞ for M is intrinsically isomorphic to (Mhyp,

1
3ghyp).

Outline of proof. — The proof is similar to that of Theorem 4.2. Let us
give a rough idea of how it works.

Let {Ci} ⊂ C (hM ) be a sequence satisfying

(5.2) lim
i→∞

M(Ci) = SphereVol(M) = Vol
(
Mhyp,

1
3ghyp

)
,

where the second equality follows from Theorem 5.1. Suppose that Ci

converges in the intrinsic flat topology to a spherical Plateau solution
C∞ = (X∞, d∞, S∞).

Let (Y,dhyp) be the space obtained by taking
⊔k

j=1(Hj , gj,hyp) and iden-
tifying k points {y1, . . . , yk} which belong respectively to H1, . . . , Hk.
Denote by p this unique singular point of Y (in general Y is not path
connected).

We will use the notations of the proof of Theorem 5.1. Take a sequence
{δ̂i} converging to 0 as i → ∞. Consider the metric space (X,dδ̂i

) and
its fundamental group Γ := π1(X). Recall that (X,dδ̂i

) is obtained by

(5) [46, Theorem 4.3] is not quite correct as stated, but this is not a serious issue. The
statement can be replaced by the following: for any ϵ > 0 and any two closed Riemann-
ian manifolds (Y ′, g′), (Y ′′, g′′), there is a metric g on the connected sum such that
the volume entropies satisfy h(g) ⩽ h(g′) + h(g′′) + ϵ and | Vol(Y, g) − Vol(Y ′, g′) −
Vol(Y ′′, g′′)| ⩽ ϵ.
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attaching summands (Y1, . . . , Yk) at one point. By abuse of notations, we
call that unique singular point of (X,dδ̂i

) by p too. The pointed sequence
(X,dδ̂i

,p) visibly “converges” to (Y,dhyp,p) as i → ∞.
Consider the barycenter maps

B̃ar := Bar ◦ Θ : spt(Ci) →
(
X,dδ̂i

)
,

see notations in the proof of Theorem 5.1. Modulo some technical details,
by following the proof of Theorem 4.2 step by step applied to B̃ar, we arrive
at the following partial conclusion. Recall that C∞ = (X∞, d∞, S∞) is the
spherical Plateau solution, limit of Ci. There is a region Z ⊂ X∞ which is
locally path connected, and if Ld∞ (resp. Lhyp) is the path metric induced
by d∞ (resp. dhyp),

(Z,Ld∞) is isometric to
(
Y \ {p}, 1

3Lhyp

)
via a map

B̃ar∞ : Z → Y \ {p}

which is a “limit” of the barycenter maps Bari. Moreover,

(B̃ar∞)♯S∞⌞Z = [[1Y ]]

where [[1Y ]] is the natural current induced by the oriented finite volume
Riemannian space Y . We also have M(S∞⌞Z) = M(C∞).

The final step is to show that (X∞, Ld∞) is in fact isometric to the
1
3Lhyp-completion of (Y \ {p}, 1

3Lhyp), which is isometric to the disjoint
union

k⊔
j=1

(
Hj ,

1
3gj,hyp

)
=
(
Mhyp,

1
3ghyp

)
.

Essentially, what we want to rule out is that (X∞, d∞) is isometric to a
non-smooth space made of manifolds attached at one point, for instance
(Y, 1

3Ldhyp). Actually, the apparent issue with the point p is only an artefact
of our definition of the barycenter map, and is not related to the geometry
of spherical Plateau solutions. By playing with the important property
that the set of Riemannian isometries of a finite union of finite volume
hyperbolic 3-manifolds is finite, and by choosing the attachment point p
generically enough, we conclude that the only possibility is the desired
statement: (X∞, Ld∞) is isometric as a length space to (Mhyp,

1
3ghyp) and

the proof of Theorem 5.2 is completed. □
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More details for the proof of Theorem 5.2 appeared in the unpublished
preprint [50].

By Theorems 5.1 and 5.2, the spherical volume behaves nicely under
geometric decompositions of 3-manifolds. To what extent this holds for
general group homology classes is an interesting problem (see [33] for such
properties in the context of the simplicial volume):

Question 10 (Additivity under connected sum). — Given two closed ori-
ented manifolds M1, M2 of same dimension at least 3, if M1♯M2 denotes
the connected sum, do we have

SphereVol(M1♯M2) = SphereVol(M1) + SphereVol(M1)?

Does any spherical Plateau solution for M1♯M2 decompose into the union
of spherical Plateau solutions for M1 and M2?

Another intriguing problem suggested by Theorems 5.1 and 5.2 is the
following:

Question 11 (RF-MCF). — What is the interplay between the spherical
Plateau problem and the Ricci flow or the mean curvature flow?

6. Plateau Dehn fillings

6.1. Preliminaries on CAT(0) Dehn fillings

In [30] Fujiwara and Manning constructed certain pseudomanifolds out
of higher dimensional finite volume hyperbolic manifolds, which generalize
3-dimensional Dehn fillings from a topological and group theoretic point of
view. In dimensions larger than 3, the spherical Plateau solutions associ-
ated to those pseudomanifolds play the role of hyperbolic Dehn fillings in
dimension 3. In this section we are interested in the asymptotic behavior
of those “Plateau Dehn fillings”.

First let us review some of the definitions and results in [30]. Let n ⩾ 3.
Consider a finite volume oriented hyperbolic n-manifold (M, ghyp) with
disjoint toral cusps E1, . . . , Em and no other ends. Here a toral cusp means
an end of M homeomorphic to the product of a torus with (−∞, 0], such
that the induced Riemannian metric on ∂E is flat. Write M̄ := M\

⋃m
j=1 E̊j .

Inside each component ∂Ej of ∂M̄ , choose an embedded totally geodesic
torus Tj of dimension ki where kj ∈ {1, . . . , n−1}. Tj is a leaf of a fibration
∂Ej → Bj with base an (n− 1 − kj)-torus Bj and leaves kj-tori (note that
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in [30], contrarily to here, the ambient dimension is by convention n+ 1).
One can form the topological space M(T1, . . . , Tm) by collapsing each leaf
of these fibrations ∂Ej → Bj to points (see [30, Definition 2.5]). This space
is a pseudomanifold which is smooth outside of the so-called filling cores
V1, . . . Vm where Vj is an (n−1−kj)-torus.M(T1, . . . , Tm) is not a manifold
except when for all j ∈ {1, . . . , m}, kj = 1. There is a natural map

M → M(T1, . . . , Tm)

which induces a natural surjection

(6.1) π1(M) → π1(M(T1, . . . , Tm)).

In dimension 3 when each kj = 1, by classical works [17, 55] it is known
that when each circle Tj has length larger than 2π, M(T1, . . . , Tm) is a
hyperbolic manifold: this is the so-called 2π theorem. The main theorem
in [30] generalizes the 2π theorem to higher dimensions. It asserts that
M(T1, . . . , Tm) admits a locally CAT(0) path metric d whenever none
of the tori Tj admit a closed geodesic of length at most 2π, or equiva-
lently when the injectivity radius of each Tj with its intrinsic metric is
strictly larger than π. Fujiwara and Manning conjectured in [31, Conjec-
ture 1.8, Question 1.9] that as injrad(Tj) → ∞, the simplicial volume of
M(T1, . . . , Tm) should converge to the simplicial volume of M and ap-
proach that limit from below.

A useful property of the locally CAT(0) metric d constructed in [30] is
that it can be chosen to approximate the hyperbolic metric on M on large
sets when the injectivity radii of the Tj are tending to infinity:

Lemma 6.1. — Fix a point p ∈ M . For any R > 0, there is iR > 0 such
that if

(6.2) injrad(Tj) > iR for all j ∈ {1, . . . , m},

then dimTj < n− 1 for all j ∈ {1, . . . , m} and one can choose the metric
d on M(T1, . . . , Tm) so that there is a closed geodesic ball BR of radius R
inside (M(T1, . . . , Tm),d) isometric to the closed geodesic ball of radius R
centered at p inside M .

Proof. — Note that when iR is large enough depending also on M ,
then (6.2) necessarily implies that Tj ̸= ∂Ej i.e. dimTj < n − 1 for all
j ∈ {1, . . . , m}. For any ϵ > 0, if iR is large enough and satisfies (6.2),
then we can replace the toral cusps Ej by new toral cusps Ẽj ⊂ Ej

which are far away inside the ends of M , so that Vol(M \
⋃m

j=1 Ẽj , ghyp) ⩾
Vol(M, ghyp) − ϵ and yet

injrad(T̃ j) > π,
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where T̃ j is the totally geodesic torus in ∂Ẽj corresponding to Tj ⊂ ∂Ej .
Then we apply [30, Proposition 2.8] to the fillings obtained with T̃ j ⊂ ∂Ẽj

(which is homeomorphic to M(T1, . . . , Tm)). □

Outside of the filling cores, d is locally induced by a Riemannian metric
of strictly negative curvature [30, Theorem 2.7]. The n-dimensional Haus-
dorff measure on M(T1, . . . , Tm) coincides with the Lebesgue measure out-
side of the filling cores, which have 0 Hausdorff measure. We denote by
M̃(T1, . . . , Tm) the universal cover of M(T1, . . . , Tm), and by Ξ the singu-
lar set in M̃(T1, . . . , Tm), namely the union of the lifts of the filling cores
in M(T1, . . . , Tm). Each component of Ξ is a totally geodesic embedded
Euclidean space [30, Subsection 4.6]. On M̃(T1, . . . , Tm), the lift of d is
CAT(0) and the group

Γ := π1(M(T1, . . . , Tm))

acts freely properly cocompactly by isometries.
In the sequel we will always assume that minm

j=1 injrad(Tj) > 2π, so that
the path metric d constructed in [30] exists. An important fact is that one
can define a barycenter map associated with (M̃(T1, . . . , Tm),d):

Bar : S+/λΓ(Γ) →
(
M̃(T1, . . . , Tm),d

)
and it has similar properties to the one reviewed in Section 2 (here the
definitions of S+ and Bar need to be adapted). There is a technical diffi-
culty caused by the fact that the distance functions on (M̃(T1, . . . , Tm),d)
are potentially non-smooth on large sets. For instance the fact that Hes-
sian bounds still make sense in a weak sense and the fact that a cycle in
S∞/λΓ(Γ) can be perturbed to a cycle in S+/λΓ(Γ) require some argu-
ments. We will not discuss those issues but we mention the following useful
papers [30, 36].

6.2. Asymptotic rigidity of Plateau Dehn fillings

For n ⩾ 3, let (M, ghyp) be non-compact oriented hyperbolic n-manifold
of finite volume, with only toral cusps E1, . . . , Em. Let Ti ⊂ ∂Ei be an
embedded totally geodesic ki-dimensional torus. We will always suppose
that the injectivity radii of Ti are larger than π. By residual finiteness, any
finite volume hyperbolic manifold is finitely covered by such a hyperbolic
manifold. Denote by g′ the following rescaling of the hyperbolic metric
on M :

g′ := (n− 1)2

4n ghyp.
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Let M(T1, . . . , Tm) be a 2π-filling constructed by Fujiwara-Manning in
[30] endowed with the metric d satisfying Lemma 6.1, for some positive
dimensional tori Ti, as explained in the previous subsection. Denote by Γ
(resp. h ∈ Hn(Γ;Z)) the fundamental group (resp. the fundamental class)
of M(T1, . . . , Tm). We will say that h is the 2π-filling homology class cor-
responding to T1, . . . , Tm.

Recall that intrinsic equivalence for integral currents spaces is defined in
Definition 3.5. The following theorem establishes the asymptotic rigidity
of Plateau Dehn fillings as injrad(Ti) → ∞, which in particular implies
the spherical volume analogue of the conjecture of Fujiwara-Manning [31,
Conjecture 1.8, Question 1.9]. This behavior is completely analogous to
what happens to hyperbolic 3-dimensional Dehn fillings.

Theorem 6.2. — Let (M, ghyp) be a non-compact finite volume ori-
ented hyperbolic manifold with toral cusps, then the following holds.

(1) For any 2π-filling homology class h,

SphereVol(h) < Vol(M, g′).

(2) Consider a sequence of families of tori T p
1 , . . . , T

p
m such that

lim
p→∞

m
min
i=1

injrad(T p
i ) = ∞.

Let Cp,∞ be any spherical Plateau solution for the 2π-filling homol-
ogy class hp corresponding to T p

1 , . . . , T
p
m. Then

lim
p→∞

M(Cp,∞) = lim
p→∞

SphereVol(hp) = Vol(M, g′),

and Cp,∞ subsequentially converges in the intrinsic flat topology to
an integral current space which is intrinsically isomorphic to (M, g′).

Outline of proof. — Let us start with the strict inequality (1). Recall
that

Γ := π1(M(T1, . . . , Tm)).
Let M̃ be the universal cover of M endowed with the hyperbolic metric
g := ghyp. Set

S2(M̃, g) :=
{
u ∈ L2(M̃, g); ∥u∥L2 = 1

}
and denote by λ(M̃,g) the natural π1(M)-action on this sphere. The funda-
mental group π1(M) naturally surjects onto Γ by (6.1), and as in Subsec-
tions 3.4, there is a natural distance non-increasing map

Θ : S2(M̃, g)/λ(M̃,g)(π1(M)) → S∞/λπ1(M)(π1(M)) → S∞/λΓ(Γ)
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where the first map is obtained by averaging on translates of a fundamental
domain.

An explicit sequence of admissible immersions from M to

S2(M̃, g)/λ(M̃,g)(π1(M))

whose image has volume converging to Vol(M, (n−1)2

4n g) is given by immer-
sions defined as follows. Let φ̃ : [0,∞) → (0, 1) be a nondecreasing smooth
function such that the function

ρ̃y(.) := φ̃ (distg(y, .))

is smooth and coincides with distg(y, .) outside of the 1-neighborhood of
y ∈ M̃ . For each c > n− 1, set

α̃c : x 7→ α̃c,x := e− c
2 ρ̃x(.) ∈ L2(M̃, g).

By homogeneity the norm ∥α̃c,x∥L2 does not depend on x ∈ M̃ . Define the
corresponding immersion by

Pc : (M̃, g′) → S2(M̃, g)

x 7→ Pc,x = α̃c,x

∥α̃c,x∥L2
.

This map is π1(M)-equivariant and descends to a map from M to

S2(M̃, g)/λ(M̃,g)(π1(M)).

By well-known properties of hyperbolic spaces and their compactifications
[15, Subsection 2.6], as c → n− 1, for any unit vector v ∈ TxM̃ ,

lim
c→n−1

∥∥dxPc,x(v)
∥∥2

L2 = lim
c→n−1

c2

4

∫
M̃

|dxρ̃y(v)|2 P2
c,x(y)dvolg(y)

= (n− 1)2

4n .

The convergence is uniform on TM̃ . In particular, the pull-back metric
converges to

g′ := (n− 1)2

4n g

as c → n− 1 and

(6.3) lim
c→n−1

Vol
(
M, (Θ ◦ Pc)∗gHil

)
= Vol(M, g′).

Let θ : π1(M) → Γ be the natural surjective homomorphism and fix a
fundamental domain D ⊂ M̃ . Consider the immersion

Θ ◦ Pc : M → S∞/λΓ(Γ).
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Unwinding the definitions, we get for x ∈ M̃ , γ ∈ Γ:

Θ ◦ Pc,x(γ) =

 ∑
τ ∈ θ−1(γ)

∫
τ.D

α̃2
c,x

∥α̃c,x∥2
L2

dvolg

1/2

.

Form this expression, one checks that Θ◦Pc has uniformly bounded second
derivatives in x as c → n− 1.

Let h ∈ Hn(Γ;Z) be the 2π-filling homology class corresponding to
T1, . . . , Tm. The push-forward current (Θ◦Pc)♯[[1M ]] is in general not an el-
ement of C (h) since M is noncompact. Nevertheless given any η > 0, we can
consider toral cusps Ẽ1, . . . , Ẽj respectively far enough inside E1, . . . , Ej

and “close” the image tori Θ ◦ Pc(∂Ẽj) without adding much volume (by
the cone construction in S∞), to obtain a new admissible Lipschitz map

Ψ : M(T1, . . . , Tm) → S∞/λΓ(Γ)

such that Ψ♯([[1M(T1, ..., Tm)]]) ∈ C (h) and

(6.4) M
(
Ψ♯

([[
1M(T1, ..., Tm)

]]))
⩽ Vol

(
M, (Θ ◦ Pc)∗gHil

)
+ η.

Taking η → 0, (6.3) and the above inequality already imply

SphereVol(h) ⩽ Vol(M, g′)

Suppose towards a contradiction that SphereVol(h) = Vol(M, g′). Then
(6.4) implies that if Dc,x is the differential of Θ ◦ Pc : (M, g′) → S∞/λΓ(Γ)
at x ∈ M , we must have for any unit norm tangent vector v ∈ TxM

(6.5) lim
c→n−1

∥Dc,x(v)∥ = 1

and the convergence is uniform on compact sets in M since the second
derivatives of Θ ◦ Pc are uniformly bounded.

For any small enough l > 0, there is a smooth closed curve a : [0, l] →
(M, g′) of length l parametrized by arclength with a(0) = a(1), such that

• a : [0, l] → M to represents an element in the non-empty kernel
ker(θ) of θ : π1(M) → Γ,

• at any point of the closed curve a, the geodesic curvature is equal
to 1.

From what we said above, the image of

Θ ◦ Pc ◦ a : [0, 1] → S∞/λΓ(Γ)

is a loop contained in S∞/λΓ(Γ) which is homotopically trivial (hence it
lifts isometrically to the sphere S∞) and has length at most 2l for all c close
enough to n− 1. Moreover the norm of the second derivative of Θ ◦ Pc ◦ a
is uniformly bounded from above. By (6.5), the norm of the differential of
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Θ◦Pc◦a converges to 1 uniformly as c → n−1. But if l is small enough, it is
impossible to have an almost arclength parametrized closed curve from [0, l]
to a Hilbert unit sphere with second derivatives bounded independently of
l. This contradiction finishes the proof of the strict inequality.

As for (2), our proof uses the barycenter map in the same fashion as
the proofs of Theorems 4.1, 5.1, 4.2 and 5.2. Let (M(T p

1 , . . . , T
p
m),dp) be a

sequence of 2π-fillings where

(6.6) lim
p→∞

m
min
k=1

injrad (T p
k ) = ∞.

For each p, let
Γp := π1 (M(T p

1 , . . . , T
p
m)) ,

let hp ∈ Hn(Γp;Z) be the corresponding homology classes and let Cp,∞ be
a spherical Plateau solution for hp. By Wenger’s compactness theorem [53,
4.19], one can assume that Cp,∞ converges in the intrinsic flat topology to
some limit integral current space

W = (XW , dW , SW ).

As a spherical Plateau solution, Cp,∞ is the intrinsic flat limit of a mini-
mizing sequence {Cp,i}i ⩾ 0 ⊂ C (hp).

From now on, we will consider

d′
p := (n− 1)2

4n dp.

In the sequel, Jacobians, lengths and distances will be computed with re-
spect to d′

p on M(T p
1 , . . . , T

p
m). As we briefly explained earlier, there is a

well-defined barycenter map

Bar : S+/λΓp(Γp) → M (T p
1 , . . . , T

p
m)

associated with Γp, (M̃(T p
1 , . . . , T

p
m),d′

p) (here S+ depends on Γp.). As
before, using Lemma 1.6, all the Cp,i can be assumed to be polyhedral
chains without loss of generality. For each p and each i, one can show that

(Barp)♯(Cp,i) =
[[

1M(T p
1 , ..., T p

m)
]]

where [[1M(T p
1 , ..., T p

m)]] is the integral current ofM(T p
1 , . . . , T

p
m) representing

the fundamental class [M(T p
1 , . . . , T

p
m)] ∈ Hn(M(T p

1 , . . . , T
p
m);Z).

Given ϵ > 0, let R be such that if

(6.7)
m

min
k=1

injrad (T p
k ) > iR,

then for the ball BR ⊂ M(T p
1 , . . . , T

p
m) as in Lemma 6.1,

(6.8) Vol
(
BR/2, g

′) > Vol(M, g′) − ϵ/2
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where g′ := (n−1)2

4n g. As in Theorems 4.1 and 5.1, the Jacobian bound for
the barycenter maps and the area formula imply that for all R large,

M(Cp,i) > Vol(M, g′) − ϵ.

Combined with the upper bound shown in (1), this already proves that

(6.9) lim
p→∞

SphereVol(hp) = Voln(M, g′).

It remains to explain why the intrinsic flat limit W = (XW , dW , SW ) of
{Cp,∞} is intrinsically isomorphic to (M, g′). The proof is based on argu-
ments similar to those of Theorem 4.2 and Theorem 5.2. By Lemma 6.1,
the pseudomanifolds (M(T p

1 , . . . , T
p
m),d′

p) contain larger and larger geo-
desic balls BR isometrically contained in (M, g′) and

M =
⋃

R > 0
BR.

Repeating the arguments of Theorem 4.2, we conclude that there is a region
Z ⊂ XW which is path connected, and if LdW

(resp. Lg′) denotes the path
metric induced by dW (resp. g′),

(Z,LdW
) is isometric to (M, g′)

via a “limit barycenter map”

Bar∞ : Z → M

such that (Bar∞)♯SW ⌞Z = [[1M ]]. Moreover by lower semicontinuity of the
mass, M(W ) ⩽ Vol(M, g′) so by the above isometry Bar∞, necessarily
XW = Z. This finishes the proof of Theorem 6.2. □

More details for the proof of Theorem 6.2 appeared in the unpublished
preprint [50].

Theorem 6.2 provides many examples of sequences of spherical Plateau
solutions {Cp,∞} which “accumulate” towards a limit. Note that this ac-
cumulation occurs from below in the sense that the mass of each Cp,∞ is
strictly less than the mass of the limit. The set of simplicial volumes [33]
of closed oriented manifolds is well-ordered in dimension 2 and 3, but not
in higher dimensions, see [35]. There is also a conjecture (due to Harold
Rosenberg?) stating that the set of areas of closed minimal surfaces in
the round 3-sphere is well-ordered. By Theorem 4.1, Theorem 5.1 and [14,
Proposition 3.9], the set of spherical volumes of closed oriented manifolds is
well-ordered in dimensions 2 and 3. All these elements suggest the following
question:
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Question 12 (Well-ordering). — Is the set of spherical volumes of closed
oriented manifolds well-ordered in any dimension?

In dimensions at least 4, it is possible that the Plateau Dehn fillings
we constructed have supports which are non-smooth, but are smooth on
large domains, due to the ϵ-regularity theorem in [3]. In fact, no example
of singular spherical Plateau solution is known:

Question 13 (Singularity). — Is there a closed oriented manifold with a
singular spherical Plateau solution?

The situation treated in Theorem 6.2 is very special due to the existence
of a model hyperbolic manifold and the availability of barycenter maps.
Considering that there are group theoretic versions of Dehn fillings devel-
oped in [34, 45], it would be desirable to investigate Plateau Dehn fillings
beyond the case of cusped hyperbolic manifolds.

Question 14 (Convergence phenomenon). — Are there other instances
where “convergence” of a sequence of pairs (Γi, hi) implies convergence of
the corresponding spherical volumes and spherical Plateau solutions?

Theorem 6.2 involves a non-compact hyperbolic manifold M , whose
fundamental group π1(M) surjects onto the fundamental groups of Dehn
fillings M(T1, . . . , Tm). Note that here, M does not determine a nontriv-
ial group homology class due to its non-compactness, but we can nev-
ertheless interpret the spherical Plateau problems for the Dehn fillings
M(T1, . . . , Tm) as spherical Plateau problems for M with respect to or-
thogonal representations obtained by composing of the fundamental group
surjections and the regular representations. Those remarks point to the
following problem:

Question 15 (Generalization). — Can the spherical Plateau problem be
extended to non-compact manifolds and general orthogonal representa-
tions?
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