This paper deals with Anosov representations of a Gromov-hyperbolic group into the semi-simple Lie group and their link with conformally flat Lorentzian structures on manifolds. The main result that we discuss states that any -Anosov representation of a Gromov hyperbolic group into preserving an acausal subset in the Einstein universe is the holonomy of a globally hyperbolic Cauchy-compact maximal conformally flat spacetime. It follows from this result remarkable examples, that we call black-white holes, conformally flat Misner spacetimes and Misner extensions and that we describe in this paper. Last but not least, we introduce and we discuss the notion of complete photons that appears naturally in these examples.
@article{TSG_2021-2022__37__137_0, author = {Rym Sma{\"\i}}, title = {Globally hyperbolic spatially compact maximal conformally flat spacetimes arising from {Anosov} representations}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {137--175}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {37}, year = {2021-2022}, doi = {10.5802/tsg.385}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.385/} }
TY - JOUR AU - Rym Smaï TI - Globally hyperbolic spatially compact maximal conformally flat spacetimes arising from Anosov representations JO - Séminaire de théorie spectrale et géométrie PY - 2021-2022 SP - 137 EP - 175 VL - 37 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.385/ DO - 10.5802/tsg.385 LA - en ID - TSG_2021-2022__37__137_0 ER -
%0 Journal Article %A Rym Smaï %T Globally hyperbolic spatially compact maximal conformally flat spacetimes arising from Anosov representations %J Séminaire de théorie spectrale et géométrie %D 2021-2022 %P 137-175 %V 37 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.385/ %R 10.5802/tsg.385 %G en %F TSG_2021-2022__37__137_0
Rym Smaï. Globally hyperbolic spatially compact maximal conformally flat spacetimes arising from Anosov representations. Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 137-175. doi : 10.5802/tsg.385. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.385/
[1] Cosmological time versus CMC time in spacetimes of constant curvature, Asian J. Math., Volume 16 (2012) no. 1, pp. 37-88 | DOI | MR | Zbl
[2] Globally hyperbolic flat space–times, J. Geom. Phys., Volume 53 (2005) no. 2, pp. 123-165 | DOI | MR | Zbl
[3] Deformations of Fuchsian AdS representations are quasi-Fuchsian, J. Differ. Geom., Volume 101 (2015) no. 1, pp. 1-46 | DOI | MR | Zbl
[4] Global Lorentzian Geometry, Pure and Applied Mathematics, Marcel Dekker, Marcel Dekker, 1996 | MR | Zbl
[5] On Smooth Cauchy Hypersurfaces and Geroch’s Splitting Theorem, Commun. Math. Phys., Volume 243 (2003), pp. 461-470 | DOI | MR | Zbl
[6] Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’, Class. Quant. Grav., Volume 24 (2007), pp. 745-749 | DOI | MR | Zbl
[7] Anosov representations and dominated splittings, J. Eur. Math. Soc., Volume 21 (2019) no. 11, pp. 3343-3414 | DOI | MR | Zbl
[8] Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys., Volume 14 (1969), pp. 329-335 | DOI | MR | Zbl
[9] Convex cocompactness in pseudo-Riemannian hyperbolic spaces, Geom. Dedicata, Volume 192 (2017), pp. 87-126 | DOI | MR | Zbl
[10] Une preuve du théorème de Liouville en géométrie conforme dans le cas analytique, Enseign. Math., Volume 49 (2003) no. 1-2, pp. 95-100 | MR | Zbl
[11] The domain of dependence, J. Math. Phys., Volume 11 (1970), pp. 437-449 | DOI | MR | Zbl
[12] Anosov representations and proper actions, Geom. Topol., Volume 21 (2017) no. 1, pp. 485-584 | DOI | MR | Zbl
[13] Tameness of Riemannian locally symmetric spaces arising from Anosov representations (2015) | arXiv
[14] Anosov representations: domain of discontinuity and applications, Invent. Math., Volume 190 (2012) no. 2, pp. 357-438 | DOI | MR | Zbl
[15] A Morse lemma for quasigeodesics in symmetric spaces and euclidean buildings, Geom. Topol., Volume 22 (2018) no. 7, pp. 3827-3923 | DOI | MR | Zbl
[16] Anosov flows, surface groups and curves in projective space, Invent. Math., Volume 165 (2006) no. 1, pp. 51-114 | DOI | MR | Zbl
[17] Plateau Problems for Maximal Surfaces in Pseudo-Hyperbolic Spaces, Ann. Sci. Éc. Norm. Supér. (4), Volume 57 (2024) no. 2, pp. 473-552 | DOI | MR | Zbl
[18] Hyperbolic Differential Equations, Ph. D. Thesis, Princeton, USA (1952)
[19] Anosov AdS representations are quasi-Fuchsian, Groups Geom. Dyn., Volume 6 (2012) no. 3, pp. 441-483 | DOI | MR | Zbl
[20] Taub-NUT space as a counterexample to almost anything, Relativity Theory and Astrophysics. Vol. 1: Relativity and Cosmology (Jürgen Ehlers, ed.) (Lectures in Applied Mathematics), Volume 8, American Mathematical Society, 1967, p. 160 | Zbl
[21] Asymptotic Properties of Fields and Space-Times, Phys. Rev. Lett., Volume 10 (1963) no. 2, pp. 66-68 | DOI | MR
[22] Espace-temps globalement hyperboliques conformément plats, Ph. D. Thesis, Université d’Avignon, France (2012)
[23] Maximal extension of conformally flat globally hyperbolic spacetimes, Geom. Dedicata, Volume 174 (2015), pp. 235-260 | DOI | MR | Zbl
[24] Anosov representations as holonomies of globally hyperbolic spatially compact conformally flat spacetimes, Geom. Dedicata, Volume 216 (2022) no. 4, 45 | DOI | MR | Zbl
Cité par Sources :