Globally hyperbolic spatially compact maximal conformally flat spacetimes arising from Anosov representations
Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 137-175.

This paper deals with Anosov representations of a Gromov-hyperbolic group into the semi-simple Lie group O 0 (2,n) and their link with conformally flat Lorentzian structures on manifolds. The main result that we discuss states that any P 1 -Anosov representation of a Gromov hyperbolic group into O 0 (2,n) preserving an acausal subset in the Einstein universe Ein 1,n-1 is the holonomy of a globally hyperbolic Cauchy-compact maximal conformally flat spacetime. It follows from this result remarkable examples, that we call black-white holes, conformally flat Misner spacetimes and Misner extensions and that we describe in this paper. Last but not least, we introduce and we discuss the notion of complete photons that appears naturally in these examples.

Publié le :
DOI : 10.5802/tsg.385

Rym Smaï 1

1 Laboratoire J. A. Dieudonné Université Côte d’Azur 06000 Nice (France)
@article{TSG_2021-2022__37__137_0,
     author = {Rym Sma{\"\i}},
     title = {Globally hyperbolic spatially compact maximal conformally flat spacetimes arising from {Anosov} representations},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {137--175},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {37},
     year = {2021-2022},
     doi = {10.5802/tsg.385},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.385/}
}
TY  - JOUR
AU  - Rym Smaï
TI  - Globally hyperbolic spatially compact maximal conformally flat spacetimes arising from Anosov representations
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2021-2022
SP  - 137
EP  - 175
VL  - 37
PB  - Institut Fourier
PP  - Grenoble
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.385/
DO  - 10.5802/tsg.385
LA  - en
ID  - TSG_2021-2022__37__137_0
ER  - 
%0 Journal Article
%A Rym Smaï
%T Globally hyperbolic spatially compact maximal conformally flat spacetimes arising from Anosov representations
%J Séminaire de théorie spectrale et géométrie
%D 2021-2022
%P 137-175
%V 37
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.385/
%R 10.5802/tsg.385
%G en
%F TSG_2021-2022__37__137_0
Rym Smaï. Globally hyperbolic spatially compact maximal conformally flat spacetimes arising from Anosov representations. Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 137-175. doi : 10.5802/tsg.385. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.385/

[1] Lars Andersson; Thierry Barbot; François Béguin; Abdelghani Zeghib Cosmological time versus CMC time in spacetimes of constant curvature, Asian J. Math., Volume 16 (2012) no. 1, pp. 37-88 | DOI | MR | Zbl

[2] Thierry Barbot Globally hyperbolic flat space–times, J. Geom. Phys., Volume 53 (2005) no. 2, pp. 123-165 | DOI | MR | Zbl

[3] Thierry Barbot Deformations of Fuchsian AdS representations are quasi-Fuchsian, J. Differ. Geom., Volume 101 (2015) no. 1, pp. 1-46 | DOI | MR | Zbl

[4] John K. Beem; Paul E. Ehrlich; Kevin L. Easley Global Lorentzian Geometry, Pure and Applied Mathematics, Marcel Dekker, Marcel Dekker, 1996 | MR | Zbl

[5] Antonio N. Bernal; Miguel Sánchez On Smooth Cauchy Hypersurfaces and Geroch’s Splitting Theorem, Commun. Math. Phys., Volume 243 (2003), pp. 461-470 | DOI | MR | Zbl

[6] Antonio N. Bernal; Miguel Sanchez Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’, Class. Quant. Grav., Volume 24 (2007), pp. 745-749 | DOI | MR | Zbl

[7] Jairo Bochi; Rafael Potrie; Andrés Sambarino Anosov representations and dominated splittings, J. Eur. Math. Soc., Volume 21 (2019) no. 11, pp. 3343-3414 | DOI | MR | Zbl

[8] Yvonne Choquet-Bruhat; Robert P. Geroch Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys., Volume 14 (1969), pp. 329-335 | DOI | MR | Zbl

[9] Jeffrey Danciger; François Guéritaud; Fanny Kassel Convex cocompactness in pseudo-Riemannian hyperbolic spaces, Geom. Dedicata, Volume 192 (2017), pp. 87-126 | DOI | MR | Zbl

[10] Charles Frances Une preuve du théorème de Liouville en géométrie conforme dans le cas analytique, Enseign. Math., Volume 49 (2003) no. 1-2, pp. 95-100 | MR | Zbl

[11] Robert P. Geroch The domain of dependence, J. Math. Phys., Volume 11 (1970), pp. 437-449 | DOI | MR | Zbl

[12] François Guéritaud; Olivier Guichard; Fanny Kassel; Anna Wienhard Anosov representations and proper actions, Geom. Topol., Volume 21 (2017) no. 1, pp. 485-584 | DOI | MR | Zbl

[13] Olivier Guichard; Fanny Kassel; Anna Wienhard Tameness of Riemannian locally symmetric spaces arising from Anosov representations (2015) | arXiv

[14] Olivier Guichard; Anna Wienhard Anosov representations: domain of discontinuity and applications, Invent. Math., Volume 190 (2012) no. 2, pp. 357-438 | DOI | MR | Zbl

[15] Michael Kapovich; Bernhard Leeb; Joan Porti A Morse lemma for quasigeodesics in symmetric spaces and euclidean buildings, Geom. Topol., Volume 22 (2018) no. 7, pp. 3827-3923 | DOI | MR | Zbl

[16] François Labourie Anosov flows, surface groups and curves in projective space, Invent. Math., Volume 165 (2006) no. 1, pp. 51-114 | DOI | MR | Zbl

[17] François Labourie; Jérémy Toulisse; Michael Wolf Plateau Problems for Maximal Surfaces in Pseudo-Hyperbolic Spaces, Ann. Sci. Éc. Norm. Supér. (4), Volume 57 (2024) no. 2, pp. 473-552 | DOI | MR | Zbl

[18] Jean Lorey Hyperbolic Differential Equations, Ph. D. Thesis, Princeton, USA (1952)

[19] Quentin Mérigot; Thierry Barbot Anosov AdS representations are quasi-Fuchsian, Groups Geom. Dyn., Volume 6 (2012) no. 3, pp. 441-483 | DOI | MR | Zbl

[20] Charles W. Misner Taub-NUT space as a counterexample to almost anything, Relativity Theory and Astrophysics. Vol. 1: Relativity and Cosmology (Jürgen Ehlers, ed.) (Lectures in Applied Mathematics), Volume 8, American Mathematical Society, 1967, p. 160 | Zbl

[21] Roger Penrose Asymptotic Properties of Fields and Space-Times, Phys. Rev. Lett., Volume 10 (1963) no. 2, pp. 66-68 | DOI | MR

[22] Clara R. Salvemini Espace-temps globalement hyperboliques conformément plats, Ph. D. Thesis, Université d’Avignon, France (2012)

[23] Clara R. Salvemini Maximal extension of conformally flat globally hyperbolic spacetimes, Geom. Dedicata, Volume 174 (2015), pp. 235-260 | DOI | MR | Zbl

[24] Rym Smai Anosov representations as holonomies of globally hyperbolic spatially compact conformally flat spacetimes, Geom. Dedicata, Volume 216 (2022) no. 4, 45 | DOI | MR | Zbl

Cité par Sources :