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GLOBALLY HYPERBOLIC SPATIALLY COMPACT
MAXIMAL CONFORMALLY FLAT SPACETIMES
ARISING FROM ANOSOV REPRESENTATIONS

Rym Smaï

Abstract. — This paper deals with Anosov representations of a Gromov-hyper-
bolic group into the semi-simple Lie group O0(2, n) and their link with conformally
flat Lorentzian structures on manifolds. The main result that we discuss states
that any P1-Anosov representation of a Gromov hyperbolic group into O0(2, n)
preserving an acausal subset in the Einstein universe Ein1,n−1 is the holonomy of a
globally hyperbolic Cauchy-compact maximal conformally flat spacetime. It follows
from this result remarkable examples, that we call black-white holes, conformally
flat Misner spacetimes and Misner extensions and that we describe in this paper.
Last but not least, we introduce and we discuss the notion of complete photons
that appears naturally in these examples.

Introduction

In all this paper, we denote by O0(1, n) and O0(2, n) the identity com-
ponents of O(1, n) and O(2, n) respectively.

Anosov representations were introduced by F. Labourie [16] to give a ge-
ometrical interpretation to the elements of a particular component, first
studied by Hitchin, of the space of representations of the fundamental
group of a closed negatively curved surface into SLn(R). Later, this notion
has been extended by Guichard and Wienhard [14] to representations of
Gromov-hyperbolic groups into any semi-simple Lie group of non-compact
type (e.g. O(p, q), SL(n,C), Sp(2n,C), . . .). Actually, any finitely generated
group Γ admitting an Anosov representation is Gromov-hyperbolic. This
fact comes from a general result of Kapovitch–Leeb–Porti [15] that has
been proved again in a more elementary way by Bochi–Potri–Sambarino
in [7, Sections 3 and 4].

Anosov representations turn out to be a fundamental notion because of
the multitude of examples and because of their close connection with geo-
metric structures on manifolds. The first examples are convex-cocompact
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subgroups of O0(1, n): a discrete subgroup Γ of O0(1, n) is said to be convex-
cocompact if it acts properly discontinuously on a convex subset of Hn with
compact quotient. Convex cocompact subgroups of O0(1, n) are exactly
those for which the canonical inclusion into O0(1, n) is Anosov.

In higher rank, the most naive analogy fails: generically, Anosov repre-
sentations of a discrete group Γ into a semi-simple Lie group G of rank
greater or equal to 2 do not act properly and cocompactly on a convex
subset of the associated symmetric space G/K, where K is a maximal
compact subgroup of G. However, many authors depicted a geometric pic-
ture for Anosov representations into higher rank semi-simple Lie groups
that extends naturally the notion of convex-cocompactness to this setting
(see e.g. [3, 9, 14]).

This paper deals with Anosov representations into the real semi-simple
Lie group O0(2, n). Since O0(2, n) is of rank two, there are two different
ways for a Gromov hyperbolic group Γ to be Anosov in O0(2, n). We focus
here on representations called P1-Anosov in [13]. These representations
act naturally on a Lorentz space: the Einstein universe. This is the first
relativistic model of the universe proposed by Albert Einstein in 1917 based
on his theory of general relativity. The Einstein universe of dimension n,
denoted by Ein1,n−1, is the space Sn−1 × S1 equipped with the conformal
class(1) of the Lorentzian metric dσ2 − dθ2 where dσ2 and dθ2 are the
round metrics on the sphere Sn−1 and the circle S1 respectively. The group
of conformal tranformations of Ein1,n−1 is O(2, n). For the reader more
familiar with Riemannian geometry, let us add that the Einstein universe
can be seen as the Lorentzian analogue of the conformal sphere in the
following sense: as in Riemannian geometry, the Lorentzian model spaces of
constant curvature, namely Minkowski spacetime of curvature 0, de Sitter
spacetime of curvature 1 and anti-de Sitter spacetime of curvature −1,
embed conformally in the Einstein universe of the same dimension.

In this paper, we propose to study the link between some P1-Anosov
representations of a Gromov hyperbolic group in O0(2, n) and spaces which
are “locally modeled” on the Einstein universe. In dimension at least three,
these last ones coincide exactly with conformally flat spacetimes(2) .

A spacetime is an oriented Lorentzian manifold (M, g) with a time-
orientation given by a timelike vector field, i.e. a vector field X such that
g(X, X) < 0. The property of spacetimes that turns out to be relevant in

(1) The conformal class of a pseudo-Riemannian metric g on a smooth manifold M is
the set of metrics ef g where f is a smooth function on M .
(2) This is a consequence of the Lorentzian version of Liouville’s theorem in conformal
geometry (see Section 1.4).
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our study is causality. Indeed, the tangent vectors to a spacetime (M, g)
split into three classes according to the sign of their norm with respect
to the metric g: those of negative, null and positive norm, called respec-
tively timelike, lightlike and spacelike tangent vectors. Causal curves are
the curves whose tangent vectors are either timelike or lightlike. Causality
refers to the causal relationships between the points of a spacetime M .
More precisely, it deals with the question: which points in M can be joined
by a causal curve? Causality of spacetimes have been extensively studied
in the 60’s by several authors, namely Choquet-Bruhat, Geroch, Kron-
heimer, Penrose, . . . Among the causal properties of a spacetime, a special
role is played by global hyperbolicity. This notion appeared naturally in
the setting of the resolution of the Einstein equations in general relativity.
By a classical theorem of Geroch [11], a spacetime M is globally hyper-
bolic if there exists an embedded Riemannian hypersurface S in M that
meets every inextendible causal curve exactly once. Such a hypersurface S

is called a Cauchy hypersurface. A globally hyperbolic spacetime M with
Cauchy hypersurface S is diffeomorphic to S × R, and so it is never com-
pact. Whereas compactness is a nice property that is usually considered in
the Riemannian setting, global hyperbolicity turns out to be the standard
assumption to make in the Lorentzian setting in order to get spacetimes
with relevant causal properties. However, compactness is a good assump-
tion on a Cauchy hypersurface of a globally hyperbolic spacetime M . Let
us point out that since all Cauchy hypersurfaces in M are diffeomorphic,
if one of them is compact, they are all compact. In this case, M is said to
be Cauchy-compact.

Causality is actually a conformal notion. Indeed, changing the metric g

by another metric in its conformal class consists in multiplying g by a pos-
itive smooth function and so the types of tangent vectors stay unchanged.
Hence, all the notions defined above still hold in a manifold equipped with
a conformal class of Lorentzian metrics. We call conformal spacetime an
oriented manifold equipped with a conformal class of Lorentzian metric and
a time-orientation given by a timelike vector field. For instance, Ein1,n−1
is a conformal spacetime: it is oriented and time-oriented by the vector
field ∂θ. The group of orientation and time-orientation preserving confor-
mal transformations is O0(2, n). A particular class of conformal spacetimes
is that of conformally flat spacetimes. A spacetime M of dimension n is
said to be conformally flat if it is locally conformal to Minkowski spacetime
R1,n−1, which is the affine space Rn equipped with the Lorentzian metric
−dt2+dx2

1+. . .+dx2
n−1. The Einstein universe is an example of conformally
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flat spacetime since it is homogenous and R1,n−1 embeds conformally in
Ein1,n−1.

Our result concerns globally hyperbolic Cauchy-compact maximal con-
formally flat spacetimes. Maximality is a natural assumption on globally
hyperbolic spacetimes that can be seen as a weak notion of completeness in
the Lorentzian setting. A globally hyperbolic spacetime M is maximal if any
isometric embedding of M into any other globally hyperbolic Lorentzian
manifold N that sends a Cauchy hypersurface S of M on a Cauchy hy-
persurface of N is surjective. Actually, the definition does not depend on
the choice of the Cauchy hypersurface S in M . By a classical result of
Choquet–Bruhat and Geroch [8] that has been generalized in different set-
tings, globally hyperbolic spacetimes usually admit a maximal extension.
Notice that this notion of maximality depends on the metric g on M since
the definition involves isometric embeddings. In [23], Rossi extends the
definition to conformal spacetimes by no longer considering isometric but
conformal embeddings. A spacetime which is maximal in this sense is said to
be C-maximal (C for conformal). Rossi proves then that any conformally
flat spacetime admits a conformally flat C-maximal extension. Since our
work concerns conformal spacetimes, we will simply say maximal instead
of C-maximal while keeping in mind that it is in the conformal sense.

A P1-Anosov representation ρ of a Gromov hyperbolic group Γ in O0(2, n)
acts on Ein1,n−1 and preserves a closed subset in Ein1,n−1 called the limit
set of ρ. We will be interested in P1-Anosov representations such that the
limit set is acausal, which in some sense means that for every pair p, q of
distinct points of the limit set, there is no causal curve of Ein1,n−1 con-
necting them; in short, the points of the limit set are not causally related
one to another. Such a P1-Anosov representation is called negative in [9].
Now, we can state our theorem proved in [24]:

Theorem 0.1. — Let n ⩾ 3 be an integer. A negative P1-Anosov repre-
sentation ρ of a Gromov hyperbolic group Γ in O0(2, n) is the holonomy of
a globally hyperbolic maximal Cauchy-compact conformally flat spacetime
Mρ(Γ).

The case where the limit set is a topological (n − 1)-sphere is due to
Barbot-Mérigot’s work in [3] (see Section 2.2 for a detailed discussion). In
this case, Mρ(Γ) is a spacetime of dimension (n + 1) which admits in its
conformal class a metric of negative constant curvature. The novelty of our
result concerns the general case where the limit set is not a topological
(n − 1)-sphere.
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We can see Theorem 0.1 as a manifestation of the “convex-cocompact-
ness” property of Anosov representations. Indeed, the proof consists in find-
ing a domain of discontinuity in the Einstein universe Ein1,n−1, i.e. an open
subset on which the action of the representation is free and properly discon-
tinuous, such that the quotient is a conformally flat spacetime of dimension
n with all the good causal properties, namely globally hyperbolic Cauchy-
compact maximal, the most important one being the Cauchy-compactness.
Notice that here this is not the quotient of the domain of discontinuity
which is compact, as it is usually the case, but a Cauchy hypersurface of the
quotient. Actually, the Cauchy-compactness is obtained as a consequence
of a general result of Guichard–Kassel–Wienhard in [13, Theorem 4.1] on
P1-Anosov representations in O(p, q) that we rephrase in the Lorentzian
setting. The key idea that allows to use Guichard–Kassel–Wienhard result
is that in a globally hyperbolic spacetime, the space of lightlike geodesics
is homeomorphic to the unit tangent bundle of a Cauchy hypersurface (see
Section 2.2).

One application of Theorem 0.1 is that it gives interesting examples of
globally hyperbolic Cauchy-compact maximal conformally flat spacetimes.
In this paper, we point out families of examples coming from the data of
a negative P1-Anosov representation ρ from a Gromov hyperbolic group Γ
in O0(2, n) that preserves a point p in the Einstein universe Ein1,n−1 and
more generally a conformal sphere of dimension 1 ⩽ k ⩽ n−2 in Ein1,n−1.
We distinguish three families of GHMC conformally flat spacetimes asso-
ciated to such representations that we call black-white holes, conformally
flat Misner spacetimes and Misner extensions. These spacetimes contain
photons, i.e. inextendible lightlike geodesics, which have the remarkable
property of being complete (see Section 4). This gives a strong motivation
for the study of globally hyperbolic maximal conformally flat spacetimes
with complete photons.

Overview of the paper

Section 1 deals with the basic notions of Lorentzian geometry: we define
the causal structure of spacetimes, in particular the global hyperbolicity,
before focusing on conformally flat structures on spacetimes. In Section 2,
we introduce Anosov representations in O(2, n) and we discuss our main
result. Section 3 is devoted to the description of black-white holes, con-
formally flat Misner spacetimes and Misner extensions. In Section 4, we
introduce the notion of complete photons and we discuss the relevance of
the study of GHM conformally flat spacetimes with complete photons.

VOLUME 37 (2021-2022)
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1. Preliminaries

In this section, we briefly recall the background material on (conformal)
spacetimes with a special focus on conformally flat spacetimes.

We denote by (p, q) the signature of a nondegenerate quadratic form Q

where p and q are respectively the negative and the positive signs in the
polar decomposition of Q.

1.1. Spacetimes

A Lorentzian manifold is a smooth manifold M of dimension (n + 1)
equipped with a nondegenerate symmetric 2-form g of signature (1, n)
called Lorentzian metric. A non-zero tangent vector v is timelike (resp.
lightlike, spacelike) if g(v, v) is negative (resp. null, positive). We say that
v is causal if it is non-spacelike. In each tangent space, the set of lightlike
vectors is a cone, called the lightcone, with two connected components (see
Figure 1.1).

A Lorentzian manifold M is time-orientable if it is possible to make a
continuous choice, in each tangent space, of one of the connected compo-
nents of the lightcone. In this case, a causal tangent vector is said to be
future if it is in the chosen component, past otherwise. More formally, a
time-orientation of M is the data of a timelike vector field X on M , i.e. such
that g(X, X) < 0. A causal vector v in TpM is future if gp(X(p), v) < 0,
past otherwise. Up to a finite covering, a Lorentzian manifold is always
time-orientable.

Throughout this paper, we consider only orientable and time-orientable
Lorentzian manifolds.

Definition 1.1. — A spacetime is a connected, oriented and time-
oriented Lorentzian manifold.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



ANOSOV REPRESENTATIONS AND CONFORMALLY FLAT SPACETIMES 143

Figure 1.1. Timelike, lightlike and spacelike tangent vectors.

The basic examples of spacetimes are Minkowski spacetime, de Sitter
spacetime and anti-de Sitter spacetime which are the Lorentzian models
of constant sectional curvature respectively equal to 0, 1, and −1. They
are the Lorentzian analogues of the Riemannian manifolds of constant sec-
tional curvature : the Euclidean space, the sphere and the hyperbolic space
respectively.

For the reader who is not familiar with these spaces, we give brief de-
scription of these spaces.

Minkowski spacetime. It is the affine space Rn+1 equipped with the
Lorentzian metric −dt2+dx2

1+. . .+dx2
n in the coordinate system associated

to the canonical basis of Rn+1, and is denoted R1,n. A time-orientation is
given by the timelike vector field ∂

∂t
.

De Sitter spacetime. Let q1,n+1 be the quadratic form on R1,n+1 given
by

q1,n(t, x1, . . . , xn) := −t2 + x2
1 + . . . + x2

n+1

in the coordinate system (t, x1, . . . , xn+1) associated to the canonical basis.
The de Sitter space dS1,n is the quadric {x ∈ R1,n : q1,n+1(x) = 1}

equipped with the metric g obtained by restriction of q1,n+1. Notice the
analogy with the definition of the round sphere.

It is a spacetime. Indeed, the tangent space to dS1,n at a point x ∈ dS1,n

is the orthogonal of x with respect to q1,n+1. Since q1,n+1(x) = 1 > 0, it is
easy to see that the restriction of q1,n to the orthogonal of x is Lorentzian.
Besides, the map f : Sn ×R → dS1,n defined by f(x, t) = (sinh t, (cosh t)x)

VOLUME 37 (2021-2022)
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is a diffeomorphism. This shows that dS1,n is oriented and time-oriented
by the timelike vector field ∂t.

Anti-de Sitter spacetime. Let R2,n be the vector space Rn+2, with
coordinates (u, v, x1, . . . , xn) in the canonical basis of Rn+2, equipped with
the nondegenerate quadratic form of signature (2, n)

q2,n(u, v, x1, . . . , xn) = −u2 − v2 + x2
1 + . . . + x2

n.

We denote by ⟨., .⟩2,n the bilinear form associated to q2,n.
Anti-de Sitter space AdS1,n is the hypersurface {x ∈ R2,n : q2,n(x) = −1}

equipped with the metric g obtained by restriction of q2,n. Notice the anal-
ogy with the definition of the hyperbolic space.

Anti-de Sitter space is a spacetime:
The metric g is Lorentzian. Indeed, the tangent space to AdS1,n at a

point x ∈ AdS1,n coincides with the orthogonal of x with respect to q2,n.
Besides, in the coordinates (r, θ, x1, . . . , xn) with{

u = r cos θ

v = r sin θ

one can easily see that AdS1,n is diffeomorphic to S1 ×Hn, where Hn is the
hyperboloid {(r, 0, x1, . . . , xn) : −r2 + x2

1 + . . . + x2
n = −1, r > 0}, and

thus is oriented. Finally, a time-orientation is given by the vector field ∂
∂θ .

Remark 1.2. — In the (r, θ, x1, . . . , xn), the AdS-metric is (−r2dθ2 +
ds2

hyp), where ds2
hyp is the hyperbolic metric, i.e. the induced metric by

q2,n on Hn = {(r, 0, x1, . . . , xn) : −r2 + x2
1 + . . . + x2

n = −1, r > 0}, and
dθ2 is the round metric on S1.

Remark 1.3. — Anti-de Sitter spacetime has constant sectional curva-
ture −1.

Let Dn be the upper hemisphere of the round sphere Sn. We denote by
dσ2 the round metric on Sn.

Proposition 1.4. — Anti-de Sitter spacetime AdS1,n is conformally
isometric to the product S1 × Dn equipped with the Lorentzian metric
(−dθ2 + dσ2).

Proof. — See e.g. [3, Section 2, Proposition 2.4]. □

As for the hyperbolic space, anti-de Sitter spacetime admits a Klein
model.
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Let S(R2,n) be the quotient of R2,n\{0} by positive homotheties (3) . Let
π : R2,n\{0} → S(R2,n) be the radial projection. The restriction of the
projection π to AdS1,n is one-to-one. Hence, one can define:

Definition 1.5. — The Klein model ADS1,n of anti-de Sitter space is
the image by π of AdS1,n in S(R2,n) equipped with the push forward of the
AdS Lorentzian metric by the restriction of π to AdS1,n.

Remark 1.6. — Unlike the hyperbolic space, the Klein model of anti-
de Sitter space is not contained in an affine chart (see [3, Definition Sec-
tion 2.7]).

Remark 1.7. — One can also consider the projection of AdS1,n in the
projective space P(R2,n), denoted by AdS1,n. The Klein model ADS1,n is a
double covering of AdS1,n.

1.2. Causality

Definition 1.8. — A causal curve (resp. timelike, lightlike, spacelike)
of a spacetime M is a C1 curve on M such that at every point, the tangent
vector to the curve is causal (resp. timelike, lightlike, spacelike). A causal
curve is said to be future (resp. past) if all tangent vectors to the curve are
future (resp. past) oriented (4) .

Causality refers to the general question on which points in a spacetime
can be joined by a causal curve, in short causally related. In this setting,
the notions of future and past of a subset of a spacetime have been defined.

Future, past, achronality. Let M be a spacetime and let A ⊂ M .
The causal future J+(A) (resp. chronological future I+(A)) of A in M is
the set of future-ends of causal (resp. timelike) curves starting from a point
p ∈ A. Similarly, we define the causal past J−(A) (resp. chronological past
I−(A)) of A in M by switching future by past in the definition.

A spacetime M could contain subsets where no point is causally related
to another. A subset A of M is achronal (resp. acausal) if no timelike (resp.
causal) curve meets A more than once.

A subset A of M is said to be future (resp. past) if I+(A) ⊂ A (resp.
I−(A) ⊂ A). The boundary of a future (past) subset of M is a closed
achronal topological hypersurface.
(3) Notice that S(R2,n) is a double covering of the projective space P(R2,n).
(4) It is possible to generalize the definition of future (resp. past) causal curves to piece-
wise differential curves (see e.g. [22, Section 3, Chapter 1]).

VOLUME 37 (2021-2022)
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Figure 1.2. Future and past of a point p0 in R1,2.

Geodesics. As in Riemannian geometry, there is a Levi Civita connec-
tion on a spacetime (M, g): this is the unique torsion-free connection on the
tangent bundle of M preserving the Lorentzian metric g. A geodesic of M

is a curve γ such that parallel transport along γ preserves tangent vectors
to the curve. Since the norm of a tangent vector to a geodesic is preserved,
the type of a geodesic in a spacetime M is always well-defined. Let us point
out that in this setting, geodesics are not considered as minimizing curves
anymore since a Lorentzian metric does not provide a distance.

Definition 1.9. — We call photon any inextendible(5) lightlike geo-
desic in a spacetime M .

Example 1.10. — Geodesics of Minkowski spacetime R1,n are the straight
lines. Indeed, the flat connection of the affine space Rn+1 is compatible with
the Lorentzian metric of R1,n.

Example 1.11. — Geodesics of anti-de Sitter spacetime AdS1,n are in-
tersections with 2-planes (see e.g. [3, Section 2]). The type of a geodesic γ

defined by a 2-plane P depends on the signature of the restriction of the
quadratic form q2,n to P . If P is

• negative, i.e. the restriction of q2,n to P is negative definite, then γ

is timelike;
• degenerate, i.e. the restriction of q2,n to P is of signature (1, 0),

then γ is lightlike;
• Lorentzian, i.e. the restriction of q2,n to P is of signature (1, 1),

then γ is spacelike.
(5) A causal curve γ : I → M in a spacetime M is said to be inextendible if there is no
causal curve γ̃ : J → M that extends γ, i.e. such that I ⊂ J and γ̃|I = γ.
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Definition 1.12. — Let M be a spacetime and let p ∈ M . We call
lightcone of p the union of photons going through p.

Global hyperbolicity. Among the causal properties of a spacetime,
an important one is global hyperbolicity. This is a natural property of
spacetimes that comes from the physical theory of general relativity in the
setting of the resolution of the Einstein equations. The first definition, due
to Leray [18], involves the notion of diamond.

Definition 1.13. — Let M be a spacetime. A diamond of M is an
intersection J+(p) ∩ J−(q) where p and q are two points in M , and is
denoted by J(p, q).

Remark 1.14. — A diamond J(p, q) is non-empty if and only if q ∈ J+(p).

Figure 1.3. Diamond in the Minkowski spacetime R1,2.

Definition 1.15. — A spacetime M is globally hyperbolic if
(1) there is no causal loop (6) in M ,
(2) all diamonds are compact.

In what follows, we give a characterization of global hyperbolicity, due
to Geroch [11], that uses the notion of Cauchy hypersurface.

Definition 1.16. — Let M be a spacetime. A Cauchy hypersurface
of M is a topological achronal hypersurface that meets every inextendible
causal curve exactly once.

(6) In the definition given by Leray, the first condition was stronger than the one stated
here and requires that M is strongly causal, i.e. that every point in M admits a causally
convex (see Definition 1.21) neighorhood, as small as we want. Sanchez [6] weaken this
condition to the non-existence of causal loops in M .

VOLUME 37 (2021-2022)
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Theorem 1.17 ([11]). — A spacetime M is globally hyperbolic if and
only if it admits a Cauchy hypersurface. In this case, M is homeomorphic
to S × R.

Example 1.18. — Minkowski spacetime R1,n is globally hyperbolic: the
Euclidean hypersurface {0} × Rn is a Cauchy hypersurface. Anti-de Sitter
spacetime AdS1,n is not globally hyperbolic since it contains many causal
loops (see e.g. [3, Section 2]).

It follows from Geroch characterization that a globally hyperbolic space-
time M can not be compact. However, M could admit a compact Cauchy
hypersurface.

Definition 1.19. — A globally hyperbolic spacetime is said to be spa-
tially compact (or Cauchy-compact) if it admits a compact Cauchy hyper-
surface.

In a globally hyperbolic spacetime, all Cauchy hypersurfaces are homeo-
morphic to one another. Consequently, if one of them is compact, they are
all compact.

Remark 1.20. — In [5], Bernal and Sanchez state that global hyperbol-
icity is equivalent to the existence of a smooth Cauchy hypersurface. The
spacetime is then diffeomorphic to S × R where S is a smooth Cauchy
hypersurface.

Causal convexity. In Riemannian geometry, it is often useful to con-
sider open neighborhoods which are geodesically convex: an open set U is
geodesically convex if any geodesic connecting two points in U stays in U .
In Lorentzian geometry, we have, in addition, another notion of convexity
which is relevant from the causality point of view.

Definition 1.21. — A subset U of a spacetime M is causally convex
in M if any causal curve connecting two points in U is contained in U .

Equivalently, a subset U of M is causally convex in M if every diamond
J(p, q), with p, q ∈ U , is contained in U .

Remark 1.22. — The future (past) of a subset of M is causally convex.
More generally, future (past) subsets are causally convex.

Example 1.23 (Regular domains of Minkowski spacetime). — In Minkow-
ski spacetime, there is an important class of causally convex open subsets
called regular domains. A future (resp. past) regular domain is the interior
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of the intersection of future (resp. past) half-spaces bounded by a degener-
ate hyperplane. It can be described as the strict epigraph (hypograph) of
a convex (concave) 1-Lipschitz function f : Rn → R.

Example 1.24 (Misner domains of Minkowski spacetime). — Regular do-
mains of R1,n−1 defined by exactly two degenerate hyperplanes are distin-
guishable: their quotients by an appropriate discrete subgroup of affine
transformations of R1,n−1 define a family of globally hyperbolic Cauchy-
compact flat spacetimes, called Misner flat spacetimes(7) , which plays a
central role in the description of globally hyperbolic Cauchy-compact flat
spacetimes (see [2]). For this reason, these regular domains are called Mis-
ner domains of R1,n−1 (see Figure 1.4).

Figure 1.4. The intersection of the strict upper half-spaces bounded
by the degenerate hyperplanes P1 and P2 of R1,2 is a future Misner
domain of R1,2.

Lemma 1.25. — Let M be a globally hyperbolic spacetime. Every causa-
lly convex open subset U of M is globally hyperbolic.

Proof. — Since M is globally hyperbolic, it does not contain causal loops
and so neither does U . Let p, q ∈ U . We denote by JU (p, q) the diamond in
U , i.e. the union of all causal curves in U connecting p to q. We show that
JU (p, q) is exactly the diamond J(p, q). It is clear that JU (p, q) ⊂ J(p, q).
Since U is causally convex in M , every causal curve of M connecting p to q

is contained in U . This proves that J(p, q) ⊂ JU (p, q). The equality follows.
Since M is globally hyperbolic, J(p, q) is compact and then so do JU (p, q).
It follows that U is globally hyperbolic. □

Remark 1.26. — In Section 1.5, we define a partial order relation on
globally hyperbolic spacetimes. It turns out that regular domains of R1,n

(7) These spacetimes have been called after the mathematician Charles W. Misner since
they can be seen as a generalization of the two-dimensional spacetime described by
Misner in [20], namely the quotient by a boost of a half space of R1,1 bounded by a
lightlike straight line.
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are exactly the causally convex open subsets of R1,n which are maximal for
this partial order relation.

Conformal spacetimes. Causality is actually a conformal notion. Re-
call that two Lorentzian metrics g and g′ on a spacetime M are conformally
equivalent if there exists a smooth function f : M → R such that g′ = ef g.
The conformal class of g is the set of all Lorenzian metrics on M confor-
mally equivalent to g. Since two conformally equivalent Lorentzian metrics
are proportional by a positive function, the types of tangent vectors are
preserved. This implies that the causal structure, in particular the time-
orientation, of M only depends on the conformal class of g.

Definition 1.27. — A conformal spacetime is a connected oriented
manifold equipped with a conformal class of Lorentzian metrics and a time-
orientation.

While causality is well-defined on a conformal spacetime, geodesics are
not well-defined anymore except lightlike geodesics. Indeed, a computation
on the Levi–Civita connection (see e.g. [4]) shows that geodesics are not
preserved by conformal changes of metrics. However, it has been proved
that the lightlike geodesics, seen as unparametrized curves, are preserved.

Theorem 1.28. — Let (M, g) be a pseudo-Riemannian manifold. Then,
lightlike geodesics are the same, up to parametrization, for all metrics con-
formally equivalent to g.

Proof. — See e.g. [10, Theorem 3]. □

An important example of conformal spacetime is the Einstein universe
which can be seen as the Lorentzian analogue of the conformal sphere in
Riemannian geometry and that we define now.

1.3. Einstein universe

In Riemannian geometry, the topological boundary of the Klein model
Kn+1 of the hyperbolic space in RPn+2 is a sphere of dimension n which
is naturally equipped with a Riemannian conformal structure. Similarly, in
the Lorentzian setting, the topological boundary of the Klein model ADS1,n

of anti-de Sitter spacetime in S(R2,n) is naturally a conformal spacetime
called the Einstein universe.

Let C be the isotropic cone of R2,n with the origin removed

C =
{

x ∈ R2,n\{0} : q2,n(x) = 0
}

.
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We denote by ∂ADS1,n the topological boundary of ADS1,n in S(R2,n),
i.e. the projection of C in S(R2,n).

Lemma 1.29. — The smooth hypersurface ∂ADS1,n of S(R2,n) is natu-
rally equipped with a conformal class of Lorentzian metrics.

Proof. — Let x ∈ C. The restriction of q2,n to the tangent space TxC =
x⊥, that we call q̂2,n, is degenerate. Its kernel is the isotropic line Rx. It is
easy to see that q̂2,n induces on the quotient space x⊥/Rx a quadratic form
of signature (1, n − 1), that we denote by qx. A simple computation shows
that the kernel of q̂2,n coincides with the kernel of the tangent map dxπ|C .
Therefore, dxπ|C induces an isomorphism between x⊥/Rx and the tangent
space Tπ(x)π(C). Thus, the push-forward of qx by this isomorphism defines
a Lorentzian metric on Tπ(x)π(C). If π(x) = π(y), the two Lorentzian
metrics on Tπ(x)π(C) obtained by pushing forward qx and qy are in the
same conformal class. It follows that q2,n define a natural conformal class
of Lorentzian metrics on ∂ADS1,n. □

Definition 1.30. — The Einstein universe of dimension n, denoted by
Ein1,n−1, is the smooth hypersurface ∂ADS1,n of S(R2,n) equipped with
its natural conformal Lorentzian structure.

The space Ein1,n−1 is also called the Klein model of the Einstein uni-
verse.

Remark 1.31. — One can also define the projection of the isotropic cone
C in the projective space P(R2,n). Notice that it is the topological boundary
of AdS1,n in P(R2,n).
The proof of Lemma 1.29 still holds and shows that the image of ∂AdS1,n

is naturally equipped with a conformal Lorentzian structure. We denote by
Ein1,n−1 the space ∂AdS1,n equipped with its natural conformal Lorentzian
structure.

Proposition 1.32. — The Einstein universe of dimension n is confor-
mally isometric to S1 × Sn−1 equipped with the conformal class of the
Lorentzian metric −dθ2 + dσ2, where dθ2 and dσ2 are the round metrics
over S1 and Sn−1.

Proof. — Let S be the Euclidean sphere of radius
√

2 of R2,n. The pro-
jection map π restricted to S ∩ C is injective with image Ein1,n−1. Let f

be the map from S1 × Sn−1 to S ∩ C defined by f((u, v), (x1, . . . , xn)) =
(u, v, x1, . . . , xn). It is easy to check that f is a diffeomorphism and that
the pull-back of the conformal class of Ein1,n−1 by π ◦f coincides with the
conformal class of −dθ2 + dσ2. □
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It follows from Proposition 1.32 that Ein1,n−1 is oriented and time-
oriented by the timelike vector field ∂

∂θ
. Thus, Ein1,n−1 is a spacetime.

Proposition 1.33. — Anti-de Sitter spacetime AdS1,n−1 embeds con-
formally in the Einstein universe Ein1,n−1.

Proof. — It is a direct consequence of Propositions 1.4 and 1.32. □

Causality of the Einstein universe. We briefly recall here some causa-
lity properties of the Einstein universe that will be useful for us. We direct
the reader to [22, Chapter 2] for more information and more details.

Lemma 1.34. — Every causal (timelike) curve of Ein1,n−1 ≃ S1 ×Sn−1

can be locally parametrized as (e2iπt, x(t)) where x is a (strictly) 1-Lipschitz
map from an interval I of R to the sphere Sn−1. The photons of Ein1,n−1 are
the causal curves such that in the previous parametrization, x : I → Sn−1

is a geodesic of Sn−1 parametrized by its arc length.

Proof. — See e.g. [23, Lemma 5]. □

Lemma 1.35. — A photon of the Einstein universe Ein1,n−1 is the pro-
jectivization of a totally isotropic 2-plane of R2,n.

Proof. — See e.g. [22, Lemma 2.12, Chapter 2]. □

It follows easily from Lemma 1.35 the following statement.

Corollary 1.36. — The lightcone of a point [x] in Ein1,n−1 is the
intersection of Ein1,n with the projectivization of the orthogonal of x with
respect to q2,n.

Proof. — The proof is left to the reader. □

Remark 1.37. — Since photons of Ein1,n−1 are projections of photons
of the double cover Ein1,n−1, Lemma 1.35 and Corollary 1.36 still hold in
Ein1,n−1.

Remark 1.38. — The lightcone of a point ξ in Ein1,n−1 minus its vertices
ξ and −ξ is the disjoint union of two topological cylinders Sn−2 × R (see
Figure 1.5). In Ein1,n−1 ⊂ P(R2,n), the lightcone of a point ξ is a pinched
torus (see Figure 1.6). A detailed description is given in [22, Chapter 2].

Lemma 1.39. — The Einstein universe Ein1,n−1 is totally vicious, i.e.
the future and the past of every point is the entire spacetime.

Proof. — See e.g. [23, Corollary 2]. □
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Figure 1.5. Lightcone of a point ξ in the double cover Ein1,n−1.

Figure 1.6. Lightcone of a point ξ in Ein1,n−1.

Lemma 1.39 says that causality is trivial in the Einstein universe. How-
ever, it turns out that the universal covering of the Einstein universe has
a rich causal structure, and is, in particular, globally hyperbolic (see Sec-
tion 1.3.1).

Remark 1.40. — It is clear that Lemma 1.39 implies that Ein1,n−1 ⊂
P(R2,n) is also totally vicious.

Conformal compactification of Minkowski spacetime. In Rieman-
nian geometry, it is known that the round sphere minus a point is confor-
mally isometric to the Euclidean space by the stereographic projection. The
situation is similar in the Lorentzian setting. A naive analogy would be that
the complement of a point in the Einstein universe is conformally isometric
to Minkowski spacetime. However, in the Lorentzian context, one should
take into account causality which was latent in the Riemannian setting.
Therefore, instead of removing a point, one should remove a lightcone from
the Einstein universe to get a conformal copy of Minkowski spacetime (by
Lemma 1.39, it would make no sense to remove all the causal curves going
through p. . . ).

Lemma 1.41. — The complement of a lightcone in Ein1,n−1 is confor-
mally isometric to Minkowski spacetime R1,n−1.
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Proof. — Let (u, v, x1, . . . , xn) be the canonical coordinate system of
Rn+2. We make the change of coordinates u = 1/2(a + b), x1 = 1/2(a − b),
v = t, yi = xi+1 for i = 1, . . . , n − 1. In the coordinate system (a, b, t, y1,

. . . , yn−1), we have

q2,n(a, b, t, y1, . . . , yn−1) = −ab − t2 + y2
1 + . . . + y2

n−1.

We define the conformal map f from R1,n−1 to P(R2,n) which associates
to every point y = (t, y1, . . . , yn−1) in R1,n−1 the point [q1,n−1(y) : 1 : y]
where q1,n−1(y) = −t2 + y2

1 + . . . + y2
n−1. It is clear that the image of

f is contained in Ein1,n−1 and that f is injective. An easy computation
shows that the image of f is the complement in Ein1,n−1 of the lightcone
of [1 : 0 : 0] ∈ Ein1,n−1. □

By Lemma 1.41, the Einstein universe can be seen as the conformal
compactification of Minkowski spacetime. This corresponds exactly to the
compactification defined by Penrose in [21]. We reproduce below the Pen-
rose diagram in Ein1,n−1 (see Figure 1.7) and in Ein1,n−1 (see Figure 1.8).

Figure 1.7. Conformal compactification of R1,2 in Ein1,2. The interior
of the diamond corresponds to Minkowski spacetime R1,2. The equa-
torial circle and the vertices of the diamond are identified to the same
point ξ in Ein1,2. The boundary at infinity of R1,2 corresponds to the
lightcone of ξ in Ein1,2.

Remark 1.42. — In the double cover Ein1,n−1, the complement of the
lightcone of a point ξ is the disjoint union of two conformal copies of
Minkowski spacetime M(ξ) and M(−ξ) where M(ξ) is the open subset
of Ein1,n−1 given by

M(ξ) = {ξ′ ∈ Ein1,n−1 : ⟨ξ, ξ′⟩2,n+1 < 0}
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where ⟨ξ, ξ′⟩2,n denotes the sign of the scalar product ⟨x, x′⟩2,n where x, x′ ∈
R2,n are representatives of ξ, ξ′ (see Figure 1.8).

Figure 1.8. Conformal compactification of R1,2 in the double cover
Ein1,2. The interior of the diamond corresponds to Minkowski space-
time R1,2. The equatorial circle is identified to a point ξ in Ein1,2 and
the vertices of the diamond are identified to the antipodal point −ξ in
Ein1,2. The boundary at infinity of R1,2 corresponds to the lightcone
of ξ in Ein1,2.

1.3.1. Universal Einstein universe

Let π : Ẽin1,n−1 → Ein1,n−1 be a universal covering of the Einstein
universe.

The universal Einstein universe is the space Ẽin1,n−1 equipped with the
pull back of the natural conformal class of Lorentzian metrics on Ein1,n−1.
It is conformally isometric to R × Sn−1 equipped with the conformal class
of the Lorentzian metric −dt2 + dσ2, where dt2 is the usual metric on R
and dσ2 the round metric on Sn−1.

The fundamental group of Ein1,n−1 is isomorphic to Z: it is the cyclic
group generated by the conformal diffeomorphism δ : Ẽin1,n−1 → Ẽin1,n−1
which associates to (t, x) the point (t + 2π, x).

The antipodal map x ∈ R2,n 7→ −x ∈ R2,n induces a map σ̄ : Ein1,n−1 →
Ein1,n−1 such that, in a decomposition S1 × Sn−1, σ̄ is the product of the
two antipodal maps of S1 and Sn−1. The map σ̄ lifts to Ẽin1,n−1 giv-
ing a map σ : Ẽin1,n−1 → Ẽin1,n−1 which associates to (t, x) the point
(t + π, −x). Notice that σ2 = δ. The fundamental group of Ein1,n−1 ⊂
P(R2,n) is the group generated by σ.
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Causal structure of the universal Einstein universe. We give a
quick description of the causal structure of Ẽin1,n−1 and we direct the
reader to [22, Chapter 2] for more details.

Since the projection π : Ẽin1,n−1 → Ein1,n−1 is conformal, the projec-
tion of a causal curve (resp. a photon) of Ẽin1,n−1 is a causal curve (resp.
a photon) of Ein1,n−1. Therefore, we deduce easily from Lemma 1.34 the
following characterization of the causal curves in Ẽin1,n−1.

Lemma 1.43. — Every causal (timelike) curve of Ẽin1,n−1 can be para-
metrized (t, x(t)) where x is a 1-Lipschitz map from an interval of R to
Sn−1. The lightlike geodesics are the causal curves such that in the previous
parametrization x is a geodesic of Sn−1 parametrized by its arc length.

Remark 1.44. — A causal curve of Ẽin1,n−1 is inextendible if the parame-
trization given by Lemma 1.43 is defined for every t ∈ R.

Corollary 1.45. — The universal Einstein universe Ẽin1,n−1 is glob-
ally hyperbolic with Cauchy hypersurfaces homeomorphic to Sn−1. In par-
ticular, Ẽin1,n−1 is Cauchy-compact.

Proof. — Set S := {0} × Sn−1 ⊂ Ẽin1,n−1 ≃ R × Sn−1. Let t ∈ R 7→
c(t) = (t, x(t)) be an inextendible causal curve in Ẽin1,n−1. The curve
c meets S in the unique point (0, x(0)). This proves that S is a Cauchy
hypersurface of Ẽin1,n−1 which is compact. The corollary follows. □

The description of photons of Ẽin1,n−1 shows that:

Lemma 1.46. — All photons of Ẽin1,n−1 starting from a point p meet
at the points σk(p).

Definition 1.47. — The points σk(p) in Ẽin1,n−1, with k ∈ Z, are said
to be conjugate.

It follows from Lemma 1.43 a simple description of the future (past) of
a point p in Ẽin1,n−1 (see Figure 1.10). We denote by d0 the distance on
the sphere Sn−1 induced by the round metric.

Lemma 1.48. — The causal future (resp. past) of a point (t0, x0) in
Ẽin1,n−1 is the set of points (t, x) such that d0(x, x0) ⩽ t − t0 (resp.
d0(x, x0) ⩽ t0 − t).

Proof. — See e.g. [22, Lemme 2.18, Chapter 2]. □

Remark 1.49. — The chronological future (resp. past) admits a similar
description by replacing the large inequalities by strict inequalities.
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Figure 1.9. Conjugate points in Ẽin1,n−1 (in the picture n = 2).

Affine charts. Let p ∈ Ẽin1,n−1. Let Mink0(p) be the set of points in
Ẽin1,n−1 which are not causally related to p, namely

Mink0(p) = Ẽin1,n−1\
(
J+(p) ∪ J−(p)

)
.

Lemma 1.50. — The restriction of the projection π : Ẽin1,n−1 →
Ein1,n−1 to the open subset Mink0(p) is injective. Besides, its image is
exactly the conformal copy of Minkowski spacetime(8)

M(ξ) = {ξ′ ∈ Ein1,n−1 : ⟨ξ, ξ′⟩2,n < 0}

with ξ = π(p).

Proof. — See e.g. [22, Lemma 2.21, Chapter 2]. □

Lemma 1.50 motivates the following definition.

Definition 1.51. — We call affine chart of Ẽin1,n−1 any open subset
Mink0(p) with p ∈ Ẽin1,n−1.

Remark 1.52. — An affine chart Mink0(p) of Ẽin1,n−1 is causally convex
in Ẽin1,n−1. Indeed, suppose there is a causal curve γ of Ẽin1,n−1 connect-
ing two points q, q′ of Mink0(p) which is not contained in Mink0(p). This
means that there is a point q0 of γ causally related to p. Since the causal-
ity relation is transitive, it follows that q or q′ is causally related to p.
Contradiction.

(8) See Remark 1.42.
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Figure 1.10. Affine chart in Ẽin1,n−1 (in the picture n = 2).

Invisible domains. Let Λ be a closed subset of Ẽin1,n−1 and let Ω(Λ)
be the set of points of Ẽin1,n−1 non-causally related to any point in Λ:

Ω(Λ) := Ẽin1,n−1\
(
J+(Λ) ∪ J−(Λ)

)
.

The open subset Ω(Λ) is usually called the invisible domain from Λ (see
e.g. [1, 3]). Notice that affine charts are invisible domains where Λ is reduced
to a single point. As for affine charts, invisible domains are causally convex
in Ẽin1,n−1 (see Remark 1.52).

Lemma 1.53. — Let Λ be a closed subset of Ẽin1,n−1. The restriction
of the projection π : Ẽin1,n−1 → Ein1,n−1 to the invisible domain Ω(Λ) is
injective. Besides, its image is exactly

{ξ′ ∈ Ein1,n−1 : ⟨ξ, ξ′⟩2,n < 0, ∀ ξ ∈ Λ}

Proof. — The invisible domain Ω(Λ) is contained in the affine chart
Mink0(p) defined by a point p of Λ. Then, by Lemma 1.50, the restric-
tion of π to Ω(Λ) is injective. The description of the image π(Ω(Λ)) follows
immediately from Lemma 1.58. □

1.3.2. Achronality

Let π : Ẽin1,n−1 → Ein1,n−1 be a universal covering of Ein1,n−1.
Although there is no achronal subset in Ein1,n−1 (see Lemma 1.39), the
Einstein universe Ein1,n−1 inherits from Ẽin1,n−1 a notion of achronality
that we define here.
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Definition 1.54. — A subset A of Ein1,n−1 is called achronal (resp.
acausal) if it is the projection of an achronal (resp. acausal) subset of
Ẽin1,n−1.

This definition is motivated by the two following lemmas.

Lemma 1.55. — The restriction of the projection π to any achronal
subset is injective.

Proof. — See e.g. [19, Lemma 2.4]. □

Lemma 1.56. — Let Λ̃1, Λ̃2 be two achronal subsets of Ẽin1,n−1 admit-
ting the same projection in Ein1,n−1. Then, there exists an integer k such
that

Λ̃1 = δkΛ̃2

where δ is the generator of the fundamental group of Ein1,n−1 introduced
above.

Proof. — See e.g. [19, Corollary 2.5]. □

In what follows, we focus on acausal subsets of Ein1,n−1. It turns out
that the notion of acausal subsets coincide with that of negative subsets (9)

of Ein1,n−1. It has been proved for loops by Labourie–Toulisse–Wolf in [17,
Proposition 2.11] (a negative loop is called positive in their terminology).
We generalized their statement for any subset of Ein1,n−1 in [24].

Definition 1.57. — A subset Λ of Ein1,n−1 is called negative if for
every points [x], [y] in Λ, the sign of the product ⟨x, y⟩2,n is negative.

Lemma 1.58. — Two distinct points p, q of Ein1,n−1 can be lifted to
points p̃, q̃ of Ẽin1,n−1 which are not extremities of a causal curve if and
only if the sign of product ⟨x, y⟩2,n is negative, where x and y are repre-
sentatives of p and q.

Proof. — See e.g. [1, Lemma 10.13]. □

Proposition 1.59 ([24, Proposition 2.47]). — Negative subsets of
Ein1,n−1 are exactly the acausal ones.

(9) This notion has been defined in [9] (see Definition 1.9) in the broader context of
pseudo-Riemannian geometry. We give here the definition in the Lorentzian setting.
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1.4. Conformally flat spacetimes

Definition 1.60. — A spacetime M is conformally flat if it is locally
conformal to Minkowski spacetime.

By Lemma 1.41, the Einstein universe is conformally flat. It follows that
any spacetime locally modeled on the Einstein universe, i.e. equipped with a
(G, X)-structure with G = O0(2, n) and X = Ein1,n−1, is conformally flat.
It turns out that in dimension greater or equal to 3, Lorentzian conformally
flat structures are rigid, in other words any conformally flat structure is
actually a (O0(2, n), Ein1,n−1)-structure:

Proposition 1.61. — Let M be a smooth manifold of dimension n ⩾ 3.
A conformally flat Lorentzian structure on M is equivalent to a (O0(2, n),
Ein1,n−1)-structure.

This is a easy consequence of the Lorentzian version of Liouville’s theo-
rem that we recall here:

Theorem 1.62 (Liouville). — Let n ⩾ 3 be an integer. Any conformal
map between two open subsets of Ein1,n−1 is the restriction of an element
of O(2, n).

The Lorentzian version of Liouville’s theorem implies also that the group
of conformal transformations of Ein1,n−1 is O(2, n). Indeed, O(2, n) acts
naturally on Ein1,n−1 and conversely, by Theorem 1.62, every conformal
transformation of Ein1,n−1 is an element of O(2, n). The group of orienta-
tion and time-orientation preserving isometries of Ein1,n−1 is the identity
component O0(2, n) of O(2, n).

1.5. Maximality

There is a partial order relation on globally hyperbolic spacetimes defined
as follow.

Definition 1.63. — A map f : (M, g) → (N, h) between two globally
hyperbolic spacetimes (M, g) and (N, h) is a Cauchy-embedding if

(1) f is an isometry, i.e. f∗h = g,
(2) f sends a Cauchy hypersurface of M on a Cauchy hypersurface of

N .
In this case, we say that N is a Cauchy-extension of M .
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Remark 1.64. — This definition does not depend on the choice of the
Cauchy hypersurface of M in the second condition. Indeed, Rossi proved
that a Cauchy-embedding f from M to N sends every Cauchy hypersuface
of M on a Cauchy hypersurface of N (see [22, Corollaire 2.3, Chapitre 3]).

Definition 1.65. — A globally hyperbolic spacetime M is said to be
maximal if every Cauchy-embedding from M to any other globally hyper-
bolic spacetime N is surjective.

A natural question is the existence of a maximal extension and if the
answer is positive, is it unique, up to isometric diffeormorphism? The an-
swers to these two questions are yes when we restrict to a rigid category of
spacetimes, this is the case, for instance, of the category of spacetimes of
constant curvature in dimension ⩾ 3 (see [22, Chapter 3] for more details).

C-maximality and C0-maximality. In [23], Rossi extends the notion
of maximality to globally hyperbolic conformal spacetimes. She defines
conformal Cauchy-embeddings by requiring that f is a conformal isometry,
namely that f∗h belongs to the conformal class of g, instead of an isometry.

Definition 1.66. — A globally hyperbolic conformal spacetime M is
C-maximal if every conformal Cauchy-embedding from M to any other
globally hyperbolic conformal spacetime is surjective.

Moreover, Rossi proves in [23] that when we restrict to the category of
conformally flat spacetimes of dimension greater or equal to 3, the exis-
tence and the uniqueness, up to conformal diffeomorphism, of the maximal
extension is ensured.

Definition 1.67. — A globally hyperbolic conformally flat spacetime
M is C0-maximal if every conformal Cauchy-embedding from M to any
other globally hyperbolic conformally flat spacetime is surjective.

Theorem 1.68 ([23, Theorem 3]). — Every globally hyperbolic confor-
mally flat spacetime M of dimension n ⩾ 3 admits a C0-maximal extension.
Moreover, this extension is unique up to conformal diffeomorphism.

Notice that if a conformally flat spacetime is C-maximal then it is in
particular, maximal among conformally flat spacetimes, in short, it is C0-
maximal. À priori, there is no reason the converse assertion is true. How-
ever, Rossi proved in [22, Chapter 7] that it is: a conformally flat spacetime
is C0-maximal if and only if it is C-maximal. For the sake of lightness, from
now on, we simply say for a C0-maximal conformally flat spacetime that
it is maximal (while keeping in mind that it is in the conformal sense).
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In what follows we use the abbreviation GHMC for “globally hyperbolic
maximal Cauchy-compact” spacetime.

2. Anosov representations and conformally flat spacetimes

In this section, we establish a link between Anosov representations in
O0(2, n) and GHMC conformally flat spacetimes. Let us first recall briefly
the definition of Anosov representation that will be useful for us.

2.1. Anosov representations

Let ρ : Γ → O0(2, n) be a representation from a Gromov hyperbolic
group (10) Γ in the semi-simple Lie group O0(2, n). Since O0(2, n) is of
rank 2, there are two ways for ρ of being Anosov. We focus here on the
so-called P1-Anosov representations.

We denote by ∂Γ the Gromov boundary of Γ. Let us recall that Γ is a
convergence group for its action on ∂Γ: for any divergent sequence {γi}
of Γ, there exist a subsequence {γij

} and points η+ and η− in ∂Γ such
that {γij } converges uniformly on compact subsets of ∂Γ\{η−} towards
the constant map η+. This is what we call a north-south dynamics (see
Figure 2.1).

Figure 2.1. North-south dynamics on the Gromov boundary of Γ.

The definition of P1-Anosov representations involves on the one hand,
the north-south dynamics on ∂Γ under the action of Γ and on the other
hand, a kind of north-south dynamics on the Einstein universe Ein1,n−1
under the action of sequences of O0(2, n) called P1-divergent. A sequence
{gi} of O0(2, n) is P1-divergent if:

(10) We direct the reader who is not familiar with the notion of Gromov hyperbolic
groups to [12, Section 2.1].
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• {gi} is divergent, i.e. leaves every compact subset of O0(2, n),
• there exist a subsequence {gij

}, an attracting point p+ ∈ Ein1,n−1
and a repelling point p− ∈ Ein1,n−1 such that {gij } converges uni-
formly to p+ on every compact set K of Ein1,n−1 in the complement
of the lightcone of p−.

Figure 2.2. Dynamics on Ein1,n−1 under the action of a P1-divergent
sequence {gi}.

Definition 2.1. — A representation ρ : Γ → O0(2, n) of a Gromov
hyperbolic group Γ to O0(2, n) is P1-Anosov if

(1) every sequence of pairwise distinct elements of ρ(Γ) is P1-divergent,
(2) there is a continuous ρ-equivariant map ξ : ∂Γ → Ein1,n−1 which

is
(a) tranverse, meaning that for any pairwise distinct elements η, η′

in ∂Γ, the points ξ(η) and ξ(η′) are not related by a lightlike
geodesic;

(b) dynamics-preserving, meaning that if η is the attracting fixed
point of some element γ ∈ Γ in ∂Γ, then ξ(η) is an attracting
fixed point of ρ(γ) in Ein1,n−1.

The limit set of a P1-Anosov representation ρ : Γ → O0(2, n) is the set
of all attracting points of P1-divergent sequences of ρ(Γ) and is denoted by
Λρ. It turns out that Λρ is exactly the image by ξ of ∂Γ. In particular, the
limit set Λρ is ρ(Γ)-invariant.

A P1-Anosov representation ρ : Γ → O0(2, n) is called negative if the
limit set Λρ is a negative subset of Ein1,n−1 (see Definition 1.57). Notice
that in this case, by Proposition 1.59, the limit set admits an acausal lift
in Ẽin1,n−1.
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Figure 2.3. Tranversality.

Figure 2.4. The “dynamics-preserving” property.

2.2. Link with conformally flat spacetimes

In [24], we relate negative P1-Anosov representations to GHCM confor-
mally flat spacetimes. More precisely, we prove the following result.

Theorem 2.2. — Let Γ be a Gromov hyperbolic group. Every negative
P1-Anosov representation ρ : Γ → O0(2, n) is the holonomy of a GHMC
conformally flat spacetime.

The particular case where the limit set is a topological (n − 1)-sphere is
due to Barbot–Mérigot [19] (such representations are called quasi-Fuchsian
in [19]): they proved that ρ is the holonomy of a GHMC AdS-spacetime of
dimension (n+1). In their proof, the authors see Ein1,n−1 as the conformal
boundary of anti-de Sitter spacetime AdS1,n and define the invisible domain
Ω(Λρ) from Λρ in AdS1,n as the set of points in AdS1,n which are not
causally related to any point in Λρ. They show that the invisible domain
is preserved by ρ(Γ) and that the action is free and properly discontinous.
Then they prove that the quotient space ρ(Γ)\Ω(Λ) is GHMC.
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Theorem 2.2 extends Barbot–Mérigot result to the case where the limit
set is not a topological (n − 1)-sphere. An application of our result is that
it gives remarkable examples of GHCM conformally flat spacetimes that
we describe in the next section. Before that, let us give the outline of the
proof of Theorem 2.2.

Outline of the proof.

• We mimic Barbot–Mérigot construction by defining the invisible
domain from the limit set in Ein1,n−1:

Ω(Λρ) := {[x] ∈ Ein1,n−1 : ⟨x, x0⟩2,n < 0 ∀ x0 ∈ Λρ} .

This is the set of points in Ein1,n−1 which are not causally related
to any point in Λρ (see Lemma 1.58).

The fact that Λρ is not a topological (n − 1)-sphere ensures that
the invisible domain Ω(Λρ) is not empty (see [24, Corollary 5.6,
Section 5.1]). The invisible domain Ω(Λρ) is a causally convex open
subset of Ein1,n−1. In particular, it is globally hyperbolic (see Lem-
ma 1.25). Furthermore, it is maximal (see [24, proposition 5.27]).
Notice that Ω(Λρ) is preserved by ρ(Γ); this is a direct consequence
of the fact that the limit set is preserved by ρ(Γ).

• The “north-south” dynamics on Ein1,n−1 under the action of ρ(Γ)
allows us to prove that the invisible domain Ω(Λρ) is a domain of
discontinuity, namely that the action of ρ(Γ) on Ω(Λρ) is free and
properly discontinuous (see [24, Prop. 5.16]).

It follows that the quotient ρ(Γ)\Ω(Λρ) is a conformally flat
spacetime called Mρ. The dynamical properties of the action shows,
without great difficulties, that the global hyperbolicity and the max-
imality of the invisible domain Ω(Λρ) descends to the quotient Mρ

(see [24, Prop. 5.19 and Prop. 5.27]).
• The tricky point of the proof is the Cauchy-compactness. It turns

out that it is a consequence of a general result of Guichard–Kassel–
Wienhard [13, Theorem 4.1] in pseudo-Riemannian geometry that
we state here in the Lorentzian setting (see Proposition 2.4). The
proof is based on the following observation.

Fact 2.3 ([24, Proposition 5.20]). — Let M be a globally hy-
perbolic spacetime. There is a canonical bijection between the unit
tangent bundle of a Cauchy hypersurface of M and the set of pho-
tons of M .
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Given a Cauchy hypersurface S of Mρ, it is sufficient to prove
that T 1S is compact to show that S is compact. By Fact 2.3, this
is equivalent to prove that the space of photons(11) of Mρ, denoted
by P(Mρ), is compact.

The compactness of P(Mρ) is obtained from Guichard-Kassel-
Wienhard result [13, Theorem 4.1] applied to the Lorentzian setting.
Their result concerns what we call the space of causal geodesics
defined as the set consisting in timelike geodesics of AdS1,n, photons
of AdS1,n and photons of Ein1,n−1 = ∂AdS1,n (see [24, Section 4]).
It is in bijection with the subset of Grassmannian Gr2(R2,n) defined
by(12) {

P ∈ Gr2
(
R2,n

)
: ⟨x, x⟩2,n ⩽ 0 ∀ x ∈ P

}
.

Guichard–Kassel–Wienhard result [13, Theorem 4.1] can be rephra-
sed as follow:

Proposition 2.4. — For every representation P1-Anosov ρ of a
Gromov hyperbolic group Γ into O0(2, n), the action of ρ(Γ) on the
space of causal geodesics which avoid the limit set, is free, properly
discontinuous and cocompact.

We denote by U the space of causal geodesics which avoid the
limit set Λρ. The compactness of P(Mρ) is deduced from Proposi-
tion 2.4 in two steps:
(1) On the one hand, we prove that P(Mρ) is homeomorphic to

the quotient of the space P(Ω(Λρ)) of photons of Ω(Λρ) by
ρ(Γ) (see [24, Proposition 5.25]).

(2) On the other hand, we prove that P(Ω(Λρ)) is exactly the set
of photons of Ein1,n−1 which avoid the limit set, namely the
intersection of U with the space P(Ein1,n−1) of photons of
Ein1,n−1 (see [24, Lemma 5.22 and Corollary 5.23]).

By Proposition 2.4, the quotient ρ(Γ)\U is compact. Since

P(Ein1,n−1) ≃ T 1Sn−1

is compact, we easily deduce that ρ(Γ)\(U ∩ P(Ein1,n−1)) is com-
pact (see [24, Prop. 5.24]). Therefore,

(11) The set of photons of M is equipped with the topology for which the canonical
bijection with T 1S is a homeomorphism.
(12) Geodesics of AdS1,n are described in Example 1.11 and photons of Ein1,n−1 in
Lemma 1.35.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



ANOSOV REPRESENTATIONS AND CONFORMALLY FLAT SPACETIMES 167

T 1S ≃ P(Mρ) ≃ ρ(Γ)\P(Ω(Λρ)) ≃ ρ(Γ)\(U ∩ P(Ein1,n−1))

is compact. Thus, S is compact.
Remark that the spacetime Mρ we constructed is of dimension n while,

in the case of Barbot–Mérigot, it is of dimension (n + 1). However, we
can also see Ein1,n−1 as a submanifold of codimension 1 in Ein1,n and
construct the invisible domain from Λρ in Ein1,n, so we get a conformally
flat spacetime of dimension (n + 1) which is still GHMC.

3. Examples

In this section, we use Theorem 2.2 to construct remarkable examples of
GHMC conformally flat spacetimes, namely:

• black-white holes, presented in Section 3.1;
• conformally flat Misner spacetimes, presented in Section 3.2
• Misner extensions, presented in Section 3.3.

3.1. Black-white holes

Let ρ : Γ → O0(2, n) be a negative P1-Anosov representation of a Gromov
hyperbolic group Γ in O0(2, n) such that:

(1) ρ(Γ) fixes a point ξ in Ein1,n−1;
(2) the limit set Λρ is not a topological (n − 2)-sphere and is contained

in the lightcone of ξ.
The first condition can be rephrased by saying that ρ(Γ) is a subgroup

of the stabilizer of ξ in O0(2, n). This last one turns out to be isomorphic
to the group of conformal transformations of Minkowski spacetime R1,n−1,
which is (R∗.O0(1, n − 1)) ⋉R1,n−1.

By Theorem 2.2, the representation ρ is the holonomy of a GHMC con-
formally flat spacetime Mρ, obtained as the quotient by ρ(Γ) of the invisible
domain Ω(Λρ) from the limit set Λρ (see Section 2.2).

Notice that the intersection of Ω(Λρ) with the lightcone of ξ is the union
of the lightlike geodesics with extremities ξ and −ξ which avoid the limit
set Λρ. Every connected component of this union is called a horizon(13) .

(13) The condition that the limit set Λρ is not a topological (n − 1)-sphere ensures the
existence of horizons. Indeed, otherwise, every point of the lightcone of ξ would be related
to a point of Λρ by a lightlike geodesic, so the intersection of Ω(Λρ) with the lightcone
of ξ would be empty.
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The lightcone of ξ disconnects Ein1,n−1 in two affine charts M(ξ) and
M(−ξ) conformally diffeomorphic to R1,n−1 (see Section 1.3, Remark 1.42).
The fact that the limit set Λρ is contained in the lightcone of ξ ensures
that the invisible domain Ω(Λρ) intersects each affine chart in an open
subset which is conformally diffeomorphic to a regular domain of R1,n−1

(see Example 1.23): one of them is future and will be interpreted as a white
hole so we denote it W , the other one is past and will be interpreted as a
black hole so we denote it B (see Figure 3.1).

Indeed, B satisfies the property that no photon of Ω(Λρ) going through
a point ξ0 ∈ B can escape from B in the future, it can only escape through
one of the horizons in the past. This is why B is called a black hole.

Similarly, no photon of Ω(Λρ) going through a point ξ0 ∈ W can escape
from W in the past, it can only escape through one of the horizons in the
future. This is why W is called a white hole.

The second condition in the definition of ρ, requiring that the limit set
is not a topological (n − 2)-sphere, ensures the existence of horizons and
consequently the black-white hole decomposition of the invisible domain.
The first condition ensures that this black-white hole decomposition is pre-
served by ρ(Γ) and descends to the quotient. Indeed, since ρ(Γ) fixes ξ, it
preserves the lightcone of ξ and the affine charts M(ξ) and M(−ξ). There-
fore, ρ(Γ) preserves the decomposition of Ω(Λρ) as the disjoint union of a
black-hole B, horizons Hi and a white-hole W . It follows that Mρ is the
disjoint union of B := ρ(Γ)\B, horizons Hi := ρ(Γ)\Hi and W := ρ(Γ)\W .
Moreover, a photon of Mρ going through a point of B (resp. W) can not
escape from B (resp. W) in the future (resp. past), but only in the past
(resp. future) through an horizon Hi.

The description above motivates the following definition.

Definition 3.1. — The GHMC conformally flat spacetime Mρ is called
a black-white hole.

Remark 3.2. — Black-white holes may be disconnected (we give an ex-
ample in Remark 3.8, Section 3.3).

3.2. Conformally flat Misner spacetimes

Let R2,n = R1,ℓ ⊕⊥R1,k be an orthogonal splitting of R2,n, with ℓ, k ∈ N∗

such that n = ℓ + k and ℓ ⩽ n − 2. Let O0(1, ℓ) × O0(1, k) be the subgroup
of O0(2, n) preserving this splitting.
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Figure 3.1. The black-white hole decomposition of the invisible do-
main Ω(Λρ) in Ein1,2. The picture represents the affine charts M(ξ)
and M(−ξ) glued along the lightcone of ξ. The equatorial circles are
identified to ξ and −ξ respectively. The upper (resp. lower) half cone
of the conformal boundary of M(ξ) is identified to the lower (resp.
upper) half cone of the conformal boundary of M(−ξ).

We denote by q1,ℓ and q1,k the restrictions of the quadratic form q2,n to
R1,ℓ and R1,k respectively. We have q2,n = q1,ℓ + q1,k. Recall that S(R2,n)
is the quotient of R2,n\{0} by the equivalence relation v ∼ λv with λ > 0.

We consider a negative P1-Anosov representation ρ of a Gromov hyper-
bolic group Γ in O0(2, n) defined by a pair (ρℓ, ρk) where

(1) ρℓ : Γ → O0(1, ℓ) is a convex cocompact representation such that
the limit set of ρℓ is the conformal sphere Sℓ−1;

(2) ρk : Γ → O0(1, k) is a relatively compact representation, i.e. the
image ρk(Γ) is contained in a compact of O0(1, k).

The limit set Λρ of the representation ρ = (ρℓ, ρk) is the conformal sphere
Sℓ−1. Notice that this last one can be seen as a connected component of
the projection in S(R2,n) of the quadric{

(x, 0) :∈ R1,ℓ ⊕ R1,k : q1,ℓ(x) = 0
}

.

Moreover, the projection in S(R2,n) of the quadric{
(0, y) :∈ R1,ℓ ⊕ R1,k : q1,k(y) = 0

}
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is the disjoint union of two antipodal conformal spheres Sk−1
+ , Sk−1

− of
dimension (k − 1) contained in Ein1,n−1 and preserved by ρ(Γ). Since the
splitting of R2,n is orthogonal, it follows from Corollary 1.36 that the limit
set Sℓ−1 is contained in the lightcone of each point of Sk−1

+ ⊔ Sk−1
− .

Let Ω(Λρ) be the invisible domain from the limit set Λρ. In what follows,
we describe the invisible domain Ω(Λρ). We will see that it presents simi-
larities with that of black-white holes introduced in the previous section.

Homogeneous model of the invisible domain. Let Cℓ be the con-
nected component of the causal cone of R1,ℓ defining Sℓ−1. More precisely,
Sℓ−1 is the projection in S(R2,n) of the boundary of Cℓ in R1,ℓ. Let

Hℓ = {x ∈ Cℓ : q1,ℓ(x) = −1}

be the hyperbolic space of dimension ℓ and let

dS1,k−1 =
{

y ∈ R1,k : q1,k(y) = 1
}

be the de Sitter space of dimension k.

Proposition 3.3. — The invisible domain Ω(Λρ) is conformally diffeo-
morphic to the homogeneous space Hℓ × dS1,k−1.

Proof. — We denote by ⟨., .⟩1,ℓ the bilinear form on R1,ℓ associated to
the quadratic form q1,ℓ. By Lemma 1.58, the invisible domain Ω(Λρ) is
the set of points [x : y] of Ein1,n−1, with x ∈ R1,ℓ and y ∈ R1,k, such
that ⟨(x; y), (z; 0)⟩2,n < 0 for every [z : 0] ∈ Sℓ−1, equivalently such that
⟨x, z⟩1,ℓ < 0 for every z ∈ ∂Cℓ. This last condition means that x is in
the intersection of the half spaces bounded by the degenerate hyperplans
⟨z, .⟩1,ℓ = 0 of R1,ℓ. It is easy to see that this intersection is exactly Cℓ. Thus
x ∈ Cℓ. Up to rescaling, one can suppose that q1,ℓ(x) = −1, i.e. x ∈ Hℓ.
Since 0 = q2,n(x; y) = q1,ℓ(x) + q1,k(y), we deduce that q1,k(y) = 1, i.e.
y ∈ dS1,k−1. It follows that

Ω(Λρ) =
{

[x : y] ∈ Ein1,n−1 : x ∈ Hℓ, y ∈ dS1,k−1
}

.

This proves the proposition. □

Black-white hole decomposition. Fix a point ξ in Sk−1
+ ⊔ Sk−1

− . The
limit set Λρ is contained in the lightcone of ξ, so the description presented
in Section 3.1 applies here: the invisible domain Ω(Λρ) is the disjoint union
of a black hole B, horizons Hi and a white hole W . The fact that Λρ is
a conformal (ℓ − 1)-sphere implies that B and W are conformally diffeo-
morphic to past and future Misner domains of R1,n−1 (see Figure 3.2).
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Moreover, there is a single horizon when ℓ < n − 2 and there are exactly
two horizons when ℓ = n − 2 (see Figure 3.2).

Figure 3.2. A Misner domain of Ein1,2. The limit set Λρ (in red) is a
conformal sphere of dimension 0, i.e. the union of two points. The black
hole B and the white hole W are conformally isometric to past and
future Misner domains of R1,2. The lightlike geodesics going through
the points of the limit set (in dark blue) disconnect the future lightcone
of ξ in two horizons: the half cone forwards (in light blue) and the half
cone backwards.

In general, this decomposition is not preserved by ρ(Γ) unless ξ is stabi-
lized by ρ(Γ). However, since the spheres Sk−1

± are preserved by ρ(Γ), the
limit set is contained in the lightcone of ρ(γ).ξ for every γ ∈ Γ. Therefore,
every ρ(γ).ξ defines a black-white hole decomposition of Ω(Λρ) which is
conformally diffeomorphic to that defined by ξ.

To sum up, each point ξ of Sk−1
± defines a decomposition of Ω(Λρ) as the

union of two Misner domains of R1,n−1 separated by one or two horizons.
For this reason, the invisible domain Ω(Λρ) is called a Misner domain of
the Einstein universe. This motivates the following definition.

Definition 3.4. — The GHMC conformally flat spacetime Mρ is called
a conformally flat Misner spacetime.

Remark 3.5. — Conformally flat Misner spacetimes are connected.

3.3. Misner extensions

Let R2,n = R1,ℓ ⊕⊥R1,k be an orthogonal splitting of R2,n, with ℓ, k ∈ N∗

such that n = ℓ + k and ℓ ⩽ n − 2. Let O0(1, ℓ) × O0(1, k) be the subgroup
of O0(2, n) preserving this splitting.
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We consider Sℓ−1 the conformal sphere of dimension (ℓ − 1) realized as
a connected component of the projection in S(R2,n) of the quadric{

[x : 0] ∈ Ein1,n−1 : x ∈ R1,ℓ
}

.

Let Ω be the set of point in Ein1,n−1 which are not causally related to
any point in Sℓ−1. Remark that O0(1, ℓ)×O0(1, k) preserves Ω. We ask the
following question:

Is there a discrete subgroup Γ of O0(1, ℓ) × O0(1, k)
preserving a causally convex open subset Ω′ of Ein1,n−1
containing strictly Ω?

The answer to this question is yes! Anosov representations give examples
of such subgroups Γ. Indeed, let ρ be a negative P1-Anosov representation
of a Gromov hyperbolic group Γ in O0(2, n) defined by a pair (ρℓ, ρk) where

(1) ρℓ : Γ → O0(1, ℓ) is a convex cocompact representation such that
the limit set Λρℓ

is strictly contained in the conformal sphere Sℓ−1;
(2) ρk : Γ → O0(1, k) is a relatively compact representation, i.e. the

image ρk(Γ) is contained in a compact of O0(1, k).
The limit set Λρ of the representation ρ is exactly Λρℓ

. Since Λρ ⊊
Sℓ−1, the invisible domain Ω(Λρ) contains stricly Ω. Moreover, since ρ(Γ)
preserves Sℓ−1, it preserves Ω. The quotient spacetime Mρ = ρ(Γ)\Ω(Λρ)
is then a GHMC conformally flat spacetime containing the conformally flat
Misner spacetime ρ(Γ)\Ω. This motivates the following definition.

Definition 3.6. — The GHMC conformally flat spacetime Mρ is called
a Misner extension.

Remark 3.7. — We denote by Sk−1
± the conformal spheres defined as the

connected components of the projection in S(R2,n) of the lightcone of R1,k.
As for Misner domains, the limit set Λρ is contained in the lightcone of each
point of Sk−1

± . Moreover, the choice of a point in Sk−1
± defines a black-white

hole decomposition of the invisible domain Ω(Λρ).

Remark 3.8. — Misner extensions may be disconnected. Indeed, consider
a splitting R2,3 = R1,2 ⊕⊥ R1,1 and let Γ be a convex-cocompact subgroup
of O0(1, 2). Now, let ρ be the representation of Γ in O0(2, 3) that acts
trivially on the factor R1,1 of the splitting. The representation ρ fixes two
points ξ0, ξ1 in Ein1,2 defined as the projection of the two isotropic lines
of R1,1 and the limit set of ρ(Γ) is a Cantor set contained in the circle S1

obtained as the intersection of the lightcones of ξ0 and ξ1. Therefore, it is
easy to see that the Misner extension defined by ρ has as many connected
components as the complement of the cantor set in S1. Notice that since ρ
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fixes a point in Ein1,2, the Misner extension above is actually a black-white
hole. So, this gives also an example of disconnected black-white holes.

4. Complete photons

In a globally hyperbolic conformally flat spacetime M , photons are em-
bedded manifolds of dimension 1 diffeomorphic to R, equipped with a nat-
ural (P̃SL(2,R), R̃P

1
)-structure. This projective structure on each photon

is a conformal invariant. We say that a photon ∆ contains conjugate points
if there is a non-surjective projective embedding of the affine line A in ∆.
The photon ∆ is said to be complete if it is projectively equivalent to A.
Equivalently, ∆ contains conjugate points if it lifts to a photon ∆̃ of M̃

which develops into a lightlike geodesic of Ẽin1,n−1 containing conjugate
points. The photon ∆ is complete if ∆̃ develops into a lightlike geodesics
connecting strictly a point of Ẽin1,n−1 to one of its first conjugate points
(see Figure 4.1).

Figure 4.1. Complete photon.

An important result of Rossi [23, Theorem 5] states that if a globally hy-
perbolic maximal conformally flat spacetime of dimension n ⩾ 3 contains
a photon with conjugate points then it is a finite quotient of Ẽin1,n−1.
This result completely classifies globally hyperbolic maximal conformally
flat spacetimes containing conjugate points. A natural question is then the
study of globally hyperbolic maximal conformally flat spacetimes without
conjugate points. The globally hyperbolic maximal conformally flat space-
times presented in Section 3, namely black-white holes, conformally flat
Misner spacetimes and Misner extensions, are examples of such spacetimes.
In addition, these spacetimes share the remarkable property of containing
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horizons foliated by complete photons (see Figures 3.1 and 3.2). This gives
a strong motivation for the study of globally hyperbolic maximal confor-
mally flat spacetimes without conjugate points but containing at least a
complete photon. In a forthcoming paper, we present some classification
results on these spacetimes.
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