Orbital cohomology and Kähler rigidity
Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 111-135.

In the late 70’s Feldman and Moore [7] defined the cohomology associated to a countable equivalence relation with coefficients in an Abelian Polish group. When the equivalence relation is the orbital one, that is it is induced by a measure preserving action of a countable group Γ on a standard Borel probability space (X,μ), it still makes sense to consider the Feldmann–Moore 1-cohomology with G-coefficients, where this time G can be any topological group. The latter cohomology, denoted by H 1 (ΓX;G), is very misterious and hard to compute, except for some exceptional cases.

In this expository paper we are going to focus our attention on the particular case when Γ is a finitely generated group and G is a Hermitian Lie group. We are going to give some recent rigidity results in this context and we will see how those results can be used to say something relevant about (some subsets of) the orbital cohomology.

Publié le :
DOI : 10.5802/tsg.384

Alessio Savini 1

1 Section de Mathématiques, University of Geneva, Rue Du Conseil Géneral 7-9, Geneva 1205 (Switzerland)
@article{TSG_2021-2022__37__111_0,
     author = {Alessio Savini},
     title = {Orbital cohomology and {K\"ahler} rigidity},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {111--135},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {37},
     year = {2021-2022},
     doi = {10.5802/tsg.384},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.384/}
}
TY  - JOUR
AU  - Alessio Savini
TI  - Orbital cohomology and Kähler rigidity
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2021-2022
SP  - 111
EP  - 135
VL  - 37
PB  - Institut Fourier
PP  - Grenoble
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.384/
DO  - 10.5802/tsg.384
LA  - en
ID  - TSG_2021-2022__37__111_0
ER  - 
%0 Journal Article
%A Alessio Savini
%T Orbital cohomology and Kähler rigidity
%J Séminaire de théorie spectrale et géométrie
%D 2021-2022
%P 111-135
%V 37
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.384/
%R 10.5802/tsg.384
%G en
%F TSG_2021-2022__37__111_0
Alessio Savini. Orbital cohomology and Kähler rigidity. Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 111-135. doi : 10.5802/tsg.384. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.384/

[1] Uri Bader; Alex Furman Boundaries, rigidity of representations, and Lyapunov exponents, Proceedings of the international congress of mathematicians (ICM 2014), Seoul, Korea, August 13–21, 2014. Vol. III: Invited lectures, KM Kyung Moon Sa, 2014, pp. 71-96 | MR | Zbl

[2] Marc Burger; Alessandra Iozzi Boundary maps in bounded cohomology, Geom. Funct. Anal., Volume 12 (2002) no. 2, pp. 281-292 (Appendix to “Continuous bounded cohomology and applications to rigidity theory” by M. Burger and N. Monod) | DOI | Zbl

[3] Marc Burger; Alessandra Iozzi Bounded Kähler class rigidity of actions on Hermitian symmetric spaces, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 77-103 | DOI | Numdam | MR | Zbl

[4] Marc Burger; Alessandra Iozzi; Anna Wienhard Hermitian symmetric spaces and Kähler rigidity, Transform. Groups, Volume 12 (2007) no. 1, pp. 5-32 | DOI | MR | Zbl

[5] Marc Burger; Nicolas Monod Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc., Volume 1 (1999), pp. 199-235 | DOI | MR | Zbl

[6] Marc Burger; Nicolas Monod Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal., Volume 12 (2002), pp. 219-280 | DOI | MR | Zbl

[7] Jacob Feldman; Calvin C. Moore Ergodic equivalence relations, cohomology, and Von Neumann algebras. I., Trans. Am. Math. Soc., Volume 234 (1977), pp. 289-324 | DOI | MR | Zbl

[8] Alex Furman A survey of Measured Group Theory (2010) | arXiv

[9] Sigurdur Helgason Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, 2001 | MR | Zbl

[10] Adam Koranyi Function spaces on bounded symmetric domains, Analysis and geometry on complex homogeneous domains (J. Faraut; S. Kaneyuki; A. Koranyi; Q.-K. Lu; G. Roos, eds.) (Progress in Mathematics), Volume 185, Birkhäuser, 2000, pp. 183-281 | Zbl

[11] George W. Mackey Point realizations of transformation groups, Ill. J. Math., Volume 6 (1962) no. 2, pp. 327-335 | DOI | MR | Zbl

[12] Grigoriĭ A. Margulis Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 17, Springer, 1991 | MR | Zbl

[13] Nicolas Monod Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics, Springer, 2001 no. 1758 | DOI | MR | Zbl

[14] Nicolas Monod On the bounded cohomology of semi-simple groups, S-arithmetic groups and products, J. Reine Angew. Math., Volume 640 (2010) no. 4, pp. 167-202 | DOI | MR | Zbl

[15] Nicolas Monod; Yehuda Shalom Cocycle superrigidity and bounded cohomology for negatively curved spaces, J. Differ. Geom., Volume 67 (2004), pp. 395-455 | DOI | MR | Zbl

[16] Calvin C. Moore Group extensions and cohomology for locally compact groups. III, Trans. Am. Math. Soc., Volume 221 (1976) no. 1, pp. 1-33 | DOI | MR | Zbl

[17] Marco Moraschini; Alessio Savini A Matsumoto/Mostow result for Zimmer’s cocycles of hyperbolic lattices, Transform. Groups, Volume 27 (2022) no. 4, pp. 1337-1392 | DOI | MR | Zbl

[18] Marco Moraschini; Alessio Savini Multiplicative constants and maximal measurable cocycles in bounded cohomology, Ergodic Theory Dyn. Syst., Volume 42 (2022) no. 11, pp. 3490-3525 | DOI | MR | Zbl

[19] Donald S. Ornstein; Benjamin Weiss Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Am. Math. Soc., Volume 2 (1980) no. 1, pp. 161-164 | DOI | MR | Zbl

[20] Maria B. Pozzetti Maximal representations of complex hyperbolic lattices into SU(M,N), Geom. Funct. Anal., Volume 25 (2015), pp. 1290-1332 | DOI | MR | Zbl

[21] Filippo Sarti; Alessio Savini Superrigidity of maximal measurable cocycles of complex hyperbolic lattices, Math. Z., Volume 300 (2022) no. 1, pp. 421-443 | DOI | MR | Zbl

[22] Filippo Sarti; Alessio Savini Parametrized Kahler class and Zariski dense orbital 1-cohomology, Math. Res. Lett., Volume 30 (2023) no. 6, pp. 1895-1929 | DOI | MR | Zbl

[23] Alessio Savini Algebraic hull of maximal measurable cocycles of surface groups into Hermitian Lie groups, Geom. Dedicata, Volume 213 (2020) no. 1, pp. 375-400 | DOI | MR | Zbl

[24] Robert J. Zimmer Strong rigidity for ergodic actions of semisimple Lie groups, Ann. Math., Volume 112 (1980) no. 3, pp. 511-529 | DOI | Zbl

[25] Robert J. Zimmer Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984 | DOI | MR | Zbl

Cité par Sources :