In the late ’s Feldman and Moore [7] defined the cohomology associated to a countable equivalence relation with coefficients in an Abelian Polish group. When the equivalence relation is the orbital one, that is it is induced by a measure preserving action of a countable group on a standard Borel probability space , it still makes sense to consider the Feldmann–Moore -cohomology with -coefficients, where this time can be any topological group. The latter cohomology, denoted by , is very misterious and hard to compute, except for some exceptional cases.
In this expository paper we are going to focus our attention on the particular case when is a finitely generated group and is a Hermitian Lie group. We are going to give some recent rigidity results in this context and we will see how those results can be used to say something relevant about (some subsets of) the orbital cohomology.
@article{TSG_2021-2022__37__111_0, author = {Alessio Savini}, title = {Orbital cohomology and {K\"ahler} rigidity}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {111--135}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {37}, year = {2021-2022}, doi = {10.5802/tsg.384}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.384/} }
TY - JOUR AU - Alessio Savini TI - Orbital cohomology and Kähler rigidity JO - Séminaire de théorie spectrale et géométrie PY - 2021-2022 SP - 111 EP - 135 VL - 37 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.384/ DO - 10.5802/tsg.384 LA - en ID - TSG_2021-2022__37__111_0 ER -
%0 Journal Article %A Alessio Savini %T Orbital cohomology and Kähler rigidity %J Séminaire de théorie spectrale et géométrie %D 2021-2022 %P 111-135 %V 37 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.384/ %R 10.5802/tsg.384 %G en %F TSG_2021-2022__37__111_0
Alessio Savini. Orbital cohomology and Kähler rigidity. Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 111-135. doi : 10.5802/tsg.384. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.384/
[1] Boundaries, rigidity of representations, and Lyapunov exponents, Proceedings of the international congress of mathematicians (ICM 2014), Seoul, Korea, August 13–21, 2014. Vol. III: Invited lectures, KM Kyung Moon Sa, 2014, pp. 71-96 | MR | Zbl
[2] Boundary maps in bounded cohomology, Geom. Funct. Anal., Volume 12 (2002) no. 2, pp. 281-292 (Appendix to “Continuous bounded cohomology and applications to rigidity theory” by M. Burger and N. Monod) | DOI | Zbl
[3] Bounded Kähler class rigidity of actions on Hermitian symmetric spaces, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 77-103 | DOI | Numdam | MR | Zbl
[4] Hermitian symmetric spaces and Kähler rigidity, Transform. Groups, Volume 12 (2007) no. 1, pp. 5-32 | DOI | MR | Zbl
[5] Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc., Volume 1 (1999), pp. 199-235 | DOI | MR | Zbl
[6] Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal., Volume 12 (2002), pp. 219-280 | DOI | MR | Zbl
[7] Ergodic equivalence relations, cohomology, and Von Neumann algebras. I., Trans. Am. Math. Soc., Volume 234 (1977), pp. 289-324 | DOI | MR | Zbl
[8] A survey of Measured Group Theory (2010) | arXiv
[9] Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, 2001 | MR | Zbl
[10] Function spaces on bounded symmetric domains, Analysis and geometry on complex homogeneous domains (J. Faraut; S. Kaneyuki; A. Koranyi; Q.-K. Lu; G. Roos, eds.) (Progress in Mathematics), Volume 185, Birkhäuser, 2000, pp. 183-281 | Zbl
[11] Point realizations of transformation groups, Ill. J. Math., Volume 6 (1962) no. 2, pp. 327-335 | DOI | MR | Zbl
[12] Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 17, Springer, 1991 | MR | Zbl
[13] Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics, Springer, 2001 no. 1758 | DOI | MR | Zbl
[14] On the bounded cohomology of semi-simple groups, S-arithmetic groups and products, J. Reine Angew. Math., Volume 640 (2010) no. 4, pp. 167-202 | DOI | MR | Zbl
[15] Cocycle superrigidity and bounded cohomology for negatively curved spaces, J. Differ. Geom., Volume 67 (2004), pp. 395-455 | DOI | MR | Zbl
[16] Group extensions and cohomology for locally compact groups. III, Trans. Am. Math. Soc., Volume 221 (1976) no. 1, pp. 1-33 | DOI | MR | Zbl
[17] A Matsumoto/Mostow result for Zimmer’s cocycles of hyperbolic lattices, Transform. Groups, Volume 27 (2022) no. 4, pp. 1337-1392 | DOI | MR | Zbl
[18] Multiplicative constants and maximal measurable cocycles in bounded cohomology, Ergodic Theory Dyn. Syst., Volume 42 (2022) no. 11, pp. 3490-3525 | DOI | MR | Zbl
[19] Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Am. Math. Soc., Volume 2 (1980) no. 1, pp. 161-164 | DOI | MR | Zbl
[20] Maximal representations of complex hyperbolic lattices into , Geom. Funct. Anal., Volume 25 (2015), pp. 1290-1332 | DOI | MR | Zbl
[21] Superrigidity of maximal measurable cocycles of complex hyperbolic lattices, Math. Z., Volume 300 (2022) no. 1, pp. 421-443 | DOI | MR | Zbl
[22] Parametrized Kahler class and Zariski dense orbital -cohomology, Math. Res. Lett., Volume 30 (2023) no. 6, pp. 1895-1929 | DOI | MR | Zbl
[23] Algebraic hull of maximal measurable cocycles of surface groups into Hermitian Lie groups, Geom. Dedicata, Volume 213 (2020) no. 1, pp. 375-400 | DOI | MR | Zbl
[24] Strong rigidity for ergodic actions of semisimple Lie groups, Ann. Math., Volume 112 (1980) no. 3, pp. 511-529 | DOI | Zbl
[25] Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984 | DOI | MR | Zbl
Cité par Sources :