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ORBITAL COHOMOLOGY AND KÄHLER RIGIDITY

Alessio Savini

Abstract. — In the late 70’s Feldman and Moore [7] defined the cohomology
associated to a countable equivalence relation with coefficients in an Abelian Polish
group. When the equivalence relation is the orbital one, that is it is induced by a
measure preserving action of a countable group Γ on a standard Borel probability
space (X, µ), it still makes sense to consider the Feldmann–Moore 1-cohomology
with G-coefficients, where this time G can be any topological group. The latter
cohomology, denoted by H1(Γ ↷ X; G), is very misterious and hard to compute,
except for some exceptional cases.

In this expository paper we are going to focus our attention on the particular
case when Γ is a finitely generated group and G is a Hermitian Lie group. We are
going to give some recent rigidity results in this context and we will see how those
results can be used to say something relevant about (some subsets of) the orbital
cohomology.

1. Introduction

In Dynamics an interesting and fruitul topic of research is measured
group theory. Given a measure preserving action of a finitely generated
group Γ on a standard Borel probability space (X,µ), measured group
theory studies the interplay between the algebraic properties of the group
Γ and the dynamical properties (for instance the structure of orbits) of the
Γ-action on (X,µ).

One of the most celebrated result in this field is the orbit equivalence
rigidity theorem by Zimmer [24, Theorem 4.3]. Roughly speaking, two
finitely generated groups Γ,Λ acting in an essentially free and measure
preserving way on two standard Borel probability spaces (X,µ) and (Y, ν),
respectively, are orbit equivalent if there exists a Borel isomorphism φ :
X → Y sending Γ-orbits to Λ-orbits. More precisely, we require that the
Borel isomorphism φ respects the involved measures, that is the direct im-
age of µ is ν, and φ(Γ.x) = Λ.φ(x), for almost every x ∈ X. When Γ and Λ
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are two lattices contained in two higher rank center free simple Lie groups
G,H, respectively, Zimmer proved that if the actions Γ ↷ (X,µ) and
Λ ↷ (Y, ν) are orbit equivalent, then G and H must be isomorphic. Such
a rigidity phenomenon is in sharp contrast with what happens in the case
of amenable groups, for example. In fact Ornstein and Weiss [19] proved
that any two ergodic measure preserving actions of two infinite countable
amenable groups must be orbit equivalent.

We denote by RΓ the equivalence relation such that two points of (X,µ)
are related if and only if they are in the same Γ-orbit, and we adopt the
analogous notation RΛ for the Λ-action on (Y, ν). One easily sees that
the definition of orbit equivalence can be naturally rewritten in terms of
the associated orbital equivalence relations. This is an easy case of the
more general idea of translating the study of measure preserving actions
of countable groups in terms of their orbital equivalence relations. The
latter idea inspired the theory of measured equivalence relations, that is
the study of the structural properties of a countable equivalence relation
(i.e. with countable equivalence classes) defined over a probability space
(X,µ). An important contribution to this topic was given in the late 70’s
by Feldman and Moore [7, 16]. They introduced the cohomology H•(R;T )
of a measured equivalence relation R with coefficients in an Abelian Polish
group T . Although Polish groups are required to give a consistent definition
of higher order cohomology, one can consider the 1-cohomology H1(R;G)
with coefficients in G, where G is any topological group. In this context
a cocycle is a Borel measurable map c : R → G satisfying the relation
c(x, z) = c(y, z)c(x, y) for almost every pair (x, y), (y, z), (x, z) ∈ R. In the
same spirit, two cocycles c1, c2 are cohomologous if there exists a Borel
measurable map f : X → G such that f(y)c1(x, y) = c2(x, y)f(x) for
almost every (x, y) ∈ R.

When R = RΓ is an orbital equivalence relation, the understanding of
its 1-cohomology H1(Γ ↷ X;G) := H1(RΓ;G) has attracted the interest of
many Mathematicians so far. The study of this exotic cohomology theory
in full generality may reveal quite harsh. For this reason, it could be helpful
to restrict the attention to specific families of groups, for both Γ and G.
For instance, when G is algebraic, it makes sense to refer to the subset
H1

ZD(Γ ↷ X;G) of Zariski dense cohomology classes, whose study can be
easier. When Γ is an irreducible higher rank lattice and G is an algebraic
group over a local field, Zimmer superrigidity theorem [24] ensures that
every Zariski dense cohomology class contains a (Zariski dense) represen-
tation as representative. Equivalently, we have a surjection from the space
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ORBITAL COHOMOLOGY AND KÄHLER RIGIDITY 113

RepZD(Γ;G) of Zariski dense representations modulo G-conjugation to the
Zariski dense orbital cohomology H1

ZD(Γ ↷ X;G).
In this short expository paper we will focus our attention on the partic-

ular case when G is a Hermitian Lie group. We say that G is Hermitian if
the associated symmetric space X admits a G-invariant complex structure
compatible with its Riemannian metric. Additionally, we call G of tube
type if X can be biholomorphically realized as V + iΩ, where V is a real
vector space and Ω ⊂ V is a proper convex cone.

Let Γ be a finitely generated group, (X,µ) be an essentially free ergodic
standard Borel probability Γ-space and consider a simple Hermitian Lie
group G not of tube type. In this setting a measurable cocycle boils down to
a measurable map σ : Γ×X → G such that σ(γ1γ2, x) = σ(γ1, γ2.x)σ(γ2, x)
for every γ1, γ2 ∈ Γ and for almost every x ∈ X. Since G is Hermitian, the
symmetric space X admits a closed differential 2-form ωX , called Kähler
form, which induces a class κb

G in the second bounded cohomology group
H2

cb(G;R) and generates it. Exploiting such a class we can define its pull-
back H2

b(σ)(kb
G) along any measurable cocycle σ and the pullback will lie

in the bounded cohomology group H2
b(Γ; L∞(X,R)). The main theorem in

this context is that the pullback class is a complete invariant of a Zariski
dense cocycles (actually of its cohomology class). In this way, we obtain an
injection of H1

ZD(Γ ↷ X;G) into H2
b(Γ; L∞(X;R)) whose image avoids the

trivial class. The latter result, obtained in collaboration with Sarti [22], is a
generalization of a previous theorem by Burger, Iozzi and Wienhard [3, 4]
for Zariski dense representations. Such generalization allows us to show
that H1

ZD(Γ ↷ X;G) is empty for some lattices satisfying a suitable coho-
mological condition.

When Γ < PU(n, 1), where n ⩾ 2, is a lattice and G = PU(p, q), for
1 ⩽ p ⩽ q, something more can be said. Using the pullback class H2

b(σ)(κb
G)

we can introduce a numerical invariant, called Toledo invariant, for (the
cohomology class of) a measurable cocycle σ. Such invariant has bounded
absolute value, so we are allowed to define maximal cocycles as those ones
attaining the maximum. We will see that maximal Zariski dense cocycles
are superrigid, that is they admit a representation as representative [21,
Theorem 2]. Moreover, applying a previous result by Pozzetti [20], we im-
mediately see that each representation lying in H1

ZD(Γ ↷ X;G) comes
actually from a representation of the ambient group PU(n, 1). As a conse-
quence, the set H1

max,ZD(Γ ↷ X;G) must be empty whenever 1 < p < q,
generalizing a result given by Pozzetti for representations.
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Plan of the paper

Section 2 is devoted to the main definitions and results about Hermitian
symmetric spaces. We will quickly review the notion of tupe type domains,
Shilov boundary, Bergmann kernels and Hermitian triple product. Then we
move to Section 3 where we introduce the orbital cohomology. In Section 4.1
we recall the bounded Kähler class and in Section 4.2 we remind its pullback
along a measurable cocycle. We conclude with Sections 5.1 and 5.2, where
we report a list of the main results we have in this context.

Acknowledgements

I would like to thank Andrea Seppi and the University of Grenoble for
the invitation to the TSG seminars and Andrea Seppi for having proposed
me to write this paper.

2. Hermitian symmetric spaces

In this section we are going to introduce the main definitions and results
about Hermitian symmetric spaces. For more details about this topic we
refer the reader either to the papers by Burger, Iozzi and Wienhard [3, 4]
or to the book chapter by Koranyi [10].

Before starting, recall that a group G is called algebraic over R if it can
be realized as the zero set of a (finite) family of R-polynomials and both the
multiplication and the inversion in G are R-algebraic maps. Given a real
algebraic group, we can restrict ourselves to the real points of G, namely
the subset G(R) of the real solutions satisfying the polynomial equations
which define G. Finally, we will denote by G(R)◦ the connected component
of the neutral element of G(R).

Definition 2.1. — A symmetric space X associated to a connected
semisimple Lie group G is Hermitian if it admits a G-invariant complex
structure JX compatible with its Riemannian tensor. If G is a connected
adjoint semisimple R-algebraic group, we say that the group G = G(R)◦

is Hermitian (or of Hermitian type) if the associated symmetric space is
Hermitian.

The first example of Hermitian Lie group to keep in mind is given by G :=
SU(p, q), namely the subgroup of SL(p+ q,C) whose elements are matrices
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preserving the Hermitian form hp,q with signature (p, q). If we set d =
min{p, q}, the symmetric space Xp,q associated to SU(p, q) parametrizes the
d-dimensional linear subspaces of Cp+q whose restriction of hp,q is positive
definite.

A Hermitian symmetric space X is called of tube type if it can be bi-
holomorphically realized as V + iΩ, where V is a real vector space and
Ω ⊂ V is a proper convex cone. When such realization cannot be done,
we say that X is not of tube type. Going back to our example Xp,q, one
can see that the latter is of tube type if and only if p = q. In this case
Xp,p is biholomorphic to Herm(p,C) + iHerm+(p,C), where Herm(p,C) is
the space of Hermitian matrices and Herm+(p,C) is the cone of positive
definite ones. It is worth noticing that for p = q = 1, the symmetric space
X1,1 boils down to upper-half plane realization of the hyperbolic plane H2

R.
For any Hermitian symmetric space X there always exists a bounded

domain DX of some finite dimensional complex space Cn such that X
and DX are biholomorphic. The domain DX is usually called bounded
realization (or Harish-Chandra realization) of X (see [10, Theorem III.2.6]
for more details). The group G of holomorphic isometries of X acts via
biholomorphisms on its bounded realization DX . Furthermore such action
can be continuously extended to the topological boundary ∂DX . In general
the latter is not a homogeneous G-space, but it admits a unique closed G-
orbit called Shilov boundary. Here we will introduce the Shilov boundary
starting from its analytic interpretation.

Definition 2.2. — Let D ⊂ Cn be a bounded domain. The Shilov
boundary of D is the unique minimal closed subset SD of ∂D such that, for
any continuous function f on the closure D and homolorphic in the interior
D, we have that

|f(z)| ⩽ max
y ∈ SD

|f(y)|,

for every z ∈ D.

The previous definition can be restated by saying that SD is the unique
minimal closed subset to add to D so that the maximum principle can be
applied for a homolorphic function which is continuous on the closure D.

In the particular case when D = DX is the bounded realization of a
Hermitian symmetric space X , the Shilov boundary SX is a homogeneous
G-space, being the unique closed G-orbit of a given point [4, Section 2.3].
To keep track of our favourite example, when G = SU(p, q), the Shilov
boundary Sp,q parametrizes all the possible d-dimensional linear subspaces
of Cp+q which are totally isotropic with respect to hp,q. Notice that the
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topological boundary ∂Dp,q parametrizes the space on which hp,q is semi-
definite, thus Sp,q is a proper subset of the topological boundary. The G-
homogeneity of Sp,q is due to the fact that it can be realized as the quo-
tient G/Q, where Q is the stabilizer of a fixed totally isotropic subspace
with maximal dimension d (say the space generated by the first d-vectors
⟨e1, . . . , ed⟩ of the canonical basis). This identification is not accidental and
can be generalized. More precisely, let G be a connected adjoint semisim-
ple R-algebraic group obtained by complexifying a Lie group of Hermitian
type G = G(R)◦. Burger, Iozzi and Wienhard [4, Section 2.3.1] proved that
there exists a proper maximal parabolic subgroup Q < G, such that SX
corresponds to the real points of the algebraic variety G/Q. More precisely
SX is isomorphic to the quotient (G/Q)(R) = G/Q, where Q = G∩Q. Also
in the product SX ×SX we can find a unique open G-orbit, denoted by S(2)

X ,
whose elements are pairs of transverse points. In the case of G = SU(p, q),
the subset of transverse pairs in S(2)

p,q is precisely the subset of pairs of linear
subspaces (V,W ) which are linearly transverse, that is V ∩W = {0}.

Let gX the Riemannian tensor of the symmetric space DX and let JX
the G-invariant complex structure. If we define

(ωX )a(X,Y ) := (gX )a(X, (JX )a(Y )),

for every X,Y ∈ TaDX , we obtain a differential 2-form ωX called Käh-
ler form. The latter is clearly G-invariant and hence closed by Cartan’s
lemma [9, VII.4]. As a consequence, we can consider, for any triple of points
x, y, z ∈ DX , the integral

βBerg(x, y, z) :=
∫

∆(x,y,z)
ωX ,

where ∆(x, y, z) is any smooth triangle with geodesic sides and vertices
x, y, z. The closedness of ωX guarantees that βBerg does not depend on the
choice of the particular filling triangle ∆(x, y, z). One of the most important
properties of βBerg is that it encodes information about the complex and
analytic structure of the domain DX . In fact the following equation holds

(2.1) βberg(x, y, z) = −(arg kX (x, y) + arg kX (y, z) + arg kX (z, x)) ,

where arg is the branch of the argument with values in (−π, π] and kX (·, ·)
is the Bergman kernel. The latter is defined as follows: Consider the space
of square integrable holomorphic functions H2(DX ), namely the space of
complex-valued holomorphic functions on DX whose norm is square inte-
grable with respect to the Lebesgue measure. We have that H2(DX ) is
a Hilbert space where the evaluation on a point w ∈ DX is a bounded
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linear functional (since DX is bounded). As a consequence, we can write
f(w) = (f |Kw), for some Kw ∈ H2(DX ), where (·|·) is the Hilbert product.
The function kX is then defined simply by kX (z, w) = (Kz|Kw).

We denote by S(3)
X the set of triples of points that are pairwise transverse.

The existence of a continuous extension of kX to pairs of transverse points
in SX , allows us to extend βBerg to (SX )(3). One can see that such extension,
still denoted by βBerg, is a continuous G-invariant alternating cocycle in the
sense of Alexander–Spanier. Moreover, we have

sup
S(3)

X

|βBerg(η0, η1, η2)| = πrkX ,

where rkX is the real rank of X (that is the maximal dimension of a flat
in X ). The restriction of βBerg|(SX )(3) to triples of points that are pairwise
transverse can be further extended to the whole product (SX )3 and such
extension, denoted by βX , is measurable and satisfies the same properties
of βBerg.

We conclude this introduction about Hermitian symmetric spaces by
talking about the Hermitian triple product. Exploiting Bergman kernels,
we can define

⟨·, ·, ·⟩ : S(3)
X → C∗,

⟨η0, η1, η2⟩ := kX (η0, η1)kX (η1, η2)kX (η2, η0).

By [4, Proposition 2.12] the previous function is continuous and by Equa-
tion (2.1) we have that

(2.2) ⟨η0, η1, η2⟩ = eiβX (η0,η1,η2) mod R∗,

where mod R∗ means that the two terms in the equation above differ by
a non-zero real number. By composing ⟨·, ·, ·⟩ with the projection R∗\C∗,
where R∗ acts on C∗ via dilations, we obtain the Hermitian triple product

⟨⟨·, ·, ·⟩⟩ : S(3)
X → R∗\C∗.

Burger, Iozzi and Wienhard exploited the identifcation between SX and the
real points (G/Q)(R) to extend the Hermitian triple product to the whole
G/Q. We denote by A∗ the group C∗ × C∗ endowed with the involution
(λ, µ) 7→ (µ, λ) and let ∆∗ the image through the diagonal embedding of
C∗. Burger, Iozzi and Wienhard [4, Corollary 2.17] showed that there exists
a rational map

⟨⟨·, ·, ·⟩⟩C : (G/Q)3 → ∆∗\A∗
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which fits in the commutative diagram reported below

S(3)
X

⟨⟨·,·,·⟩⟩ //

i3

��

R∗\C∗

∆
��

(G/Q)3 ⟨⟨·,·,·⟩⟩C // ∆∗\A∗,

where i : SX → G/Q identifies SX with the real points (G/Q)(R) and ∆
is the diagonal embedding.

The function ⟨⟨·, ·, ·⟩⟩C is called complex Hermitian triple product. It
encodes important information about the structure of the Hermitian sym-
metric space X . In fact, consider the (Zariski open) set Oη0,η1 ⊂ G/Q such
that the map

Pη0,η1 : Oη0,η1 → R , Pη0,η1(η) := ⟨⟨η0, η1, η⟩⟩C

is well-defined. By [4, Lemma 5.1] we have that X is not of tube type if
and only if the map Pm

η0,η1
is not constant for any m ∈ N.

3. Cohomology of orbital equivalence relation

In this section we will introduce the main topic of the paper, namely
the orbital cohomology. We mainly refer to the reader to the papers by
Feldman and Moore [7, 16].

A standard Borel space (X,µ) is a measure space which is Borel isomor-
phic to a Polish space (that is a separable completely metrizable space).
Consider an equivalence relation R ⊂ X ×X defined on a standard Borel
probability space (X,µ). We are going to suppose that R is countable, that
is the equivalence classes have at most countable cardinality. Feldman and
Moore introduced an exotic cohomology theory associated to a countable
equivalence relation with coefficients in a Polish Abelian group. Since for
our purpose it will be sufficient to look at the cohomology in degree one, we
will give a definition ad hoc. An important feature of the 1-cohomology of
a countable equivalence relation is that its definition works fine also when
the coefficients are a general topological group G, not only a Polish Abelian
one.

Definition 3.1. — Let R be a countable equivalence relation on a
standard Borel probability space (X,µ). Consider a topological group G.
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A measurable cocycle for R with coefficients in G is a Borel measurable
map c : R → G such that

(3.1) c(x, z) = c(y, z)c(x, y),

for almost every pair (x, y), (y, z), (x, z) ∈ R. Two measurable cocycles
c1, c2 are cohomologous if there exists a measurable function f : X → G

such that

(3.2) f(y)c2(x, y) = c1(x, y)f(x),

for almost every (x, y) ∈ R. We denote by H1(R;G) the 1-cohomology of R
with coefficients in G, namely the quotient of measurable cocycles modulo
cohomology.

In this paper we will be interested in the particular case when R is an
orbital equivalence relation. More precisely, let Γ be a finitely generated
countable group. We consider an essentially free measure preserving action
of Γ on a standard Borel probability space (X,µ). The orbital equivalence
relation RΓ is defined as follows: two points x, y ∈ X are related if and
only if there exists γ ∈ Γ such that y = γ.x.

If we define

Θ : {c : RΓ → G | c is measurable} → {σ : Γ ×X → G |σ is measurable} ,
c 7→ σc(γ, x) := c(x, γ.x),

then the image of the set of measurable cocycles corresponds to the set of
measurable functions σ : Γ ×X → G such that

(3.3) σ(γ1γ2, x) = σ(γ1, γ2.x)σ(γ2, x),

for every γ1, γ2 ∈ Γ and almost every x ∈ X. We will call σ a measurable
cocycle. Similarly, we can rewrite the definition of cohomology using the
function Θ. In fact, given two measurable cocycles σ1, σ2 : Γ ×X → G, we
will say that they are cohomologous if there exists a measurable function
f : X → G such that

(3.4) f(γ.x)σ2(γ, x) = σ1(γ, x)f(x) ,

for every γ ∈ Γ and almost every x ∈ X. We denote the 1-cohomology of
the orbital equivalence relation RΓ by H1(Γ ↷ X;G) and we call it orbital
cohomology.

Here we will interested in a more general equivalence relation among
cocycles. In fact we will allow different groups as targets.
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Definition 3.2. — Let σ1 : Γ × X → G1 and σ2 : Γ × X → G2 be
two measurable cocycles. We say that they are equivalent if there exists an
isomorphism s : G1 → G2 such that s ◦ σ1 is cohomologous to σ2.

It is worth noticing that a morphism Γ → G is precisely a measurable
cocycle not depending on the space variable in (X,µ). In fact, cocycles
can be viewed as generalized morphisms (they are actually morphisms
of groupoids). In this way we obtain a map from the G-character va-
riety Rep(Γ;G), that is homomorphisms modulo G-conjugation, to the
1-cohomology H1(Γ ↷ X;G).

The study of the cohomology H1(Γ ↷ X;G) may reveal quite hard to
approach. For this reason it could be easier to restrict the attention to
particular classes of groups, both for Γ and G. Suppose for instance that
G corresponds to (the connected component) of the real points of a real
algebraic group G. Then we are allowed to give the following:

Definition 3.3. — Let Γ be a finitely generated group and let (X,µ)
be an ergodic standard Borel probability Γ-space. The algebraic hull of a
measurable cocycle σ : Γ ×X → G is the G-conjugacy class of the smallest
algebraic subgroup L < G such that L = L(R)◦ cointains the image of a
cocycle cohomologous to σ. We say that σ is Zariski dense if L = G.

The previous definition works because the group G is algebraic and hence
Noetherian [25, Proposition 9.1]. For the way we defined the algebraic hull,
it is canonically attached to the cohomology class of a cocycle. Thus it
makes sense to refer to the subset of Zariski dense cohomology classes,
denoted by H1

ZD(Γ ↷ X;G).

Remark 3.4. — Let Γ be a finitely generated group and let (X,µ) and
(Y, ν) be two essentially free standard Borel probability Γ-spaces. Consider
a topological group G. Given a Γ-equivariant map π : X → Y and a
measurable cocycle σ : Γ × Y → G, one can consider the pullback cocycle,
namely

π∗σ : Γ ×X → G , π∗σ(γ, x) := σ(γ, π(x)).
The pullback construction naturally induces a map at the level of cohomol-
ogy classes

π∗ : H1(Γ ↷ Y ;G) → H1(Γ ↷ X;G).
It can be interesting trying to understand when this map is injective. It is
difficult to say something relevant in full generality. However, if one assumes
that G is (the real points of) an algebraic group then the injectivity holds
on the subset of classes whose algebraic hull is semisimple (see [8] for more
details).
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4. The pullback of the bounded Kähler class

4.1. Boundary theory for bounded cohomology

The main goal of this section is to introduce the notion of bounded Kähler
class. For more details about the background related to this topic we refer
the reader to [6, 13].

We start recalling the definition of continuous bounded cohomology. We
will not give the usual definition but we will base our approach on bound-
ary theory. Let G be a locally compact group. A Lebesgue G-space is a
standard Borel probability space (X,µ) where the measure µ is only quasi-
G-invariant. A Banach G-module E is a Banach space endowed with an
isometric G-action π : G → Isom(E). We will always assume that E is
the dual of some Banach space. In this way it makes sense to refer to the
weak-∗ Borel structure on E.

Example 4.1. — Consider a locally compact group G and a Lebesgue
G-space (X,µ). The main examples of Banach G-modules we will consider
in this paper are:

(1) The field R endowed with its Euclidean structure and trivial G-
action.

(2) The Banach space L∞(X;R) of essentially bounded measurable
functions with the weak-∗ structure coming from being the dual
of L1(X;R) and isometric G-action given by

(g.f)(x) := f
(
g−1.x

)
,

for every f ∈ L∞(X;R). With an abuse of notation we referred to
an equivalence class in L∞ by fixing a representative.

Given a Lebesgue G-space (X,µ), we define the module of bounded
weak-∗ measurable functions on X•+1 as

B∞
w∗

(
X•+1;E

)
:=

{
f : X•+1 → E

∣∣∣∣ f is weak-∗ measurable and

∥f∥∞ := sup
x0, ..., x•

∥f(x0, . . . , x•)∥E < ∞
}

By identifying two bounded measurable functions f, f ′ ∈ B∞
w∗(X•+1;E)

when they coincide almost everywhere, we define the space of essentially
bounded weak-∗ measurable functions on X•+1, namely

L∞
w∗

(
X•+1;E

)
:= B∞

w∗

(
X•+1;E

)
/ ∼,
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where f ∼ f ′ means that they are identified. With the same abuse of
notation of Example 4.1, we are going to refer to classes in L∞

w∗ by fixing a
representative.

We can endow B∞
w∗(X•+1;E) with a structure of Banach G-module via

the isometric action

(g.f)(x0, . . . , x•) := π(g)f
(
g−1.x0, . . . , g

−1.x•
)
,

for every f ∈ B∞
w∗(X•+1;E), g ∈ G and x0, . . . , x• ∈ X. Since the rela-

tion ∼ is preserved by the previous isometric action, the Banach G-module
structure on B∞

w∗(X•+1;E) naturally descends to a BanachG-module struc-
ture on L∞

w∗(X•+1;E). A function f ∈ B∞
w∗(X•+1;E) (or a class in L∞

w∗

(X•+1;E)) is G-invariant if g.f = f for every g ∈ G. Similarly, we say that
it is alternating if

ε(τ)f(x0, . . . , x•) = f
(
xτ(0), . . . , xτ(•)

)
,

for every permutation τ ∈ S•+1, where ε(τ) is the sign. We denote by
B∞

w∗(X•+1;E)G (respectively L∞
w∗(X•+1;E)G) the submodule of G-inva-

riant vectors and we use the notation B∞
w∗,alt(X•+1;E) (respectively L∞

w∗,alt
(X•+1;E)) to refer to the subspace of alternating functions.

Together with the standard homogeneous coboundary operator

δ• : B∞
w∗

(
X•+1;E

)
→ B∞

w∗

(
X•+2;E

)
,

(δ•f) (x0, . . . , x•+1) :=
•+1∑
i=0

(−1)if (x0, . . . , xi−1, xi+1, . . . , x•+1) ,

we obtain a cochain complex (B∞
w∗(X•+1;E), δ•). In a similar way, each

coboundary operator descends to the quotient, hence we obtain also the
cochain complex of essentially bounded functions (L∞

w∗(X•+1;E), δ•). We
will exploit such complex to define the continuous bounded cohomology of
G. We first need to introduce the notion of boundary.

Definition 4.2. — Let G be a locally compact group and let (B, ν) be
a Lebesgue G-space. We say that (B, ν) is amenable if it admits a G-equi-
variant mean, that is a norm-one linear operator

m : L∞(G×B;R) → L∞(B;R),

such that m(χG×B) = χB , m(f) ⩾ 0 whenever f is positive and
m(f · χG×A) = m(f) · χA for any essentially bounded function f and mea-
surable set A ⊂ B.

An amenable G-space (B, ν) is a G-boundary (in the sense of Burger and
Monod [6]) if any Borel measurable G-equivariant function B ×B → H is
essentially constant, where H varies in the set of all Hilbert G-modules.
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Example 4.3. — We give three different examples of G-boundary that
we will use later.

(1) Let FS be the free group with symmetric generating set S. We
want to exhibit a FS-boundary. In this case is sufficient to consider
B = ∂TS the boundary of the Cayley graph of FS , namely the set
of reduced words on S with infinite length. We endow B with the
quasi-invariant measure

µS(C(x)) = 1
2r(2r − 1)n−1 ,

where x is a reduced word of length n, r = |S| and C(x) is the cone
of infinite reduced words starting with x.

(2) Consider a finitely generated group Γ with symmetric generating set
S. If ρ : FS → Γ is a representation where N = ker ρ is exactly given
by the normal subgroup generated by the relations in Γ, we can
consider the set L∞(∂TS , µS)N of N -invariant essentially bounded
functions. By Mackey realization theorem [11] there exists a stan-
dard measure space (B, ν) and a measurable map π : ∂TS → B

such that π∗(µS) = ν and the pullback of L∞(B, ν) via π is ex-
actly L∞(∂TS , µS)N . By [1, Theorem 2.7] we have that (B, ν) is a
Γ-boundary.

(3) When Γ is a lattice in a semisimple Lie group G, its Γ-boundary
can be easily realized as the quotient G/P , where P is any minimal
parabolic subgroup [1, Theorem 2.3].

Using the notion of boundary we are finally ready to give the following:

Definition 4.4. — Let G be a locally compact group and let (B, ν) a
G-boundary. The continuous bounded cohomology of G with coefficients
in the Banach G-module E is the cohomology of the complex

H•
cb(G;E) := H•

((
L∞

w∗

(
B•+1;E

)G
, δ•

))
.

Remark 4.5. — The same definition remains valid if we restrict ourselves
to the subcomplex of essentially bounded alternating functions, namely

H•
cb(G;E) ∼= H•

((
L∞

w∗,alt
(
B•+1;E

)G
, δ•

))
.

We want to point out that our definition is not the usual one, which relies
on another complex defined directly on the group. In fact, one can consider
the complex (Ccb(G•+1;E), δ•) of E-valued continuous bounded functions
on tuples of G, endowed with the same action described for the complex
of essentially measurable functions. It is still true that the subcomplex of
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G-invariant vectors computes the continuous bounded cohomology of G
[13, Section 6.1]. Using such complex, it is also clear that any continuous
representation G → H induces functorially a map between the bounded
cohomologies of G and H. This is less clear for our definition based on
boundary theory, but our approach will have the advantage to make the
computation more explicit. We will make it more clear in the next section.

Example 4.6. — When a group Γ is discrete (for instance for a finitely
generated one or for a lattice), the continuity condition is trivial. Hence we
refer simply to the bounded cohomology of Γ and we denote it by H•

b .
(1) Let Γ be a discrete countable finitely generated group. Its bounded

cohomology H•
b(Γ;E) with coefficients in E is given by the cohomol-

ogy of the complex (L∞
w∗(B•+1;E)Γ, δ•), where B is the boundary

described in Example 4.3(2).
(2) Suppose that Γ < G is a lattice in a semisimple Lie group G. If

P < G is a minimal parabolic subgroup, the bounded cohomology of
Γ is given by the cohomology of the complex (L∞

w∗((G/P )•+1;E)Γ,

δ•) in virtue of Example 4.3(3).

Any G-equivariant morphism α : E → F between G-modules induces a
map at the level of continuous bounded cohomology groups

H•
cb(α) : H•

cb(G;E) → H•
cb(G;F ).

In this paper we will mainly be interested in the map induced by the change
of coefficients R ↪→ L∞(X;R), where (X,µ) is a Lebesgue G-space.

We conclude this section by spending some words about the complex of
bounded measurable functions. Let (Y, ν) be any Lebesgue G-space, not
necessarily amenable. Burger and Iozzi [2, Corollary 2.2] proved that there
exists a canonical non-trivial map

c• : H•
((

B∞
w∗

(
Y •+1;E

)
, δ•)G

)
→ H•

cb(G;E),

and the same holds if we restrict to the alternating subcomplex.

Example 4.7. — Let G be a semisimple Hermitian Lie group G with
symmetric space X . If SX is the Shilov boundary, we know that it is iso-
morphic to the quotient G/Q (by Section 2) and hence it is a Lebesgue
G-space (since homogeneous quotients admit always a quasi-G-invariant
measure). The Bergman cocycle βX is an everywhere defined alternating
cocycle that can be considered as an element

βX ∈ B∞
alt

(
S3

X ;R
)G
.
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By [4, Proposition 4.3] the image of the class [βX ] under the map

c2 : H2
((

B∞
alt

(
S•+1

X ;R
)G ; δ•

))
→ H2

cb(G;R)

does not vanish.

Definition 4.8. — Let G be a semisimple Hermitian Lie group with
symmetric space X . We denote by

kb
G := c2[βX ] ∈ H2

cb(G;R)

and we call it bounded Kähler class.

It is well-known [4, 20] that the bounded Kähler class is a generator
for the second bounded cohomology group. We will exploit this fact in
Section 5.2 when we are going to speak about maximal cocycles.

4.2. Pullback along measurable cocycles

We are finally ready to introduce the notion of pullback along a mea-
surable cocycle. We mainly refer to [17, 18] for a detailed discussion about
this topic.

We will first introduce the pullback using the complex of continuous
functions on the group, then we will see how we can implement it in terms
of boundaries. Let Γ be a finitely generated discrete group and let G be
a semisimple Hermitian Lie group. Consider a standard Borel probability
Γ-space (X,µ). Given a measurable cocycle σ : Γ ×X → G we can define

C•
b(σ) : Ccb

(
G•+1;R

)
→ Cb

(
Γ•+1; L∞(X;R)

)
,

(C•
b(σ)(ψ)) (γ0, . . . , γ•)(x) := ψ

(
σ

(
γ−1

0 , x
)−1

, . . . , σ
(
γ−1

• , x
)−1

)
.

The above map is a well-defined cochain map and it induces a map at the
level of bounded cohomology [23, Lemma 2.7], namely

H•
b(σ) : H•

cb(G;R) → H•
b(Γ; L∞(X;R)), H•

b(σ)([ψ]) := [C•
b(σ)(ψ)] .

Furthermore, when σ1 and σ2 are cohomologous cocycles, by [23, Lem-
ma 2.9] we have that

H•
b(σ1) = H•

b(σ2).

Definition 4.9. — Let G be a semisimple Hermitian Lie group, let Γ
be a finitely generated group and let (X,µ) be a standard Borel proba-
bility Γ-space. Given a measurable cocycle σ : Γ × X → G, we define its
parametrized Kähler class as

H2
b(σ)

(
kb

G

)
∈ H2

b(Γ; L∞(X;R)).
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Our next goal is to show how we can implement explicitly the pullback
in terms of boundaries. We start with the following

Definition 4.10. — Let Γ be a finitely generated group with Γ-boun-
dary B. Consider a standard Borel probability Γ-space (X,µ). Given a
semisimple Hermitian Lie group G, let (Y, ν) be a Lebesgue G-space. A
boundary map for a measurable cocycle σ : Γ ×X → G is a Borel measur-
able map

ϕ : B ×X → Y,

which is σ-equivariant, namely

ϕ(γ.b, γ.x) = σ(γ.x)ϕ(b, x),

for all γ ∈ Γ and almost every b ∈ B, x ∈ X.

Given a boundary map ϕ : B ×X → Y , the map

ϕx : B → Y,

is called x-slice of ϕ and it is Borel measurable by [12, Chapter VII, Lem-
ma 1.3]. The σ-equivariance of ϕ implies that slices change equivariantly
as follows:

ϕγ.x(b) = σ(γ, x)ϕx

(
γ−1b

)
,

for all γ ∈ Γ and almost every b ∈ B, x ∈ X.
Recall G has associated a connected adjoint semisimple real algebraic

group G obtained via complexification. Suppose that Y corresponds to
the real points of a real algebraic quotient G/L, for some real algebraic
subgroup L < G. We say that the x-slice is Zariski dense if the Zariski
closure of the essential image of ϕx is the whole G/L.

For our purposes it will be crucial the following:

Theorem 4.11 ([21, Corollary 2.16]). — Let Γ be a finitely generated
group with Γ-boundary B and let (X,µ) be an ergodic standard Borel
probability Γ-space. Consider a Zariski dense measurable cocycle σ : Γ ×
X → G into a semisimple Hermitian Lie group G. Then there exists a
boundary map ϕ : B×X → G/Q, where G/Q is the algebraic realization of
the Shilov boundary associated to G. Moreover, almost every slice is Zariski
dense and preserves transversality, that is ϕ(b0, x), ϕ(b1, x) are transverse
whenever b0, b1 are so.

We want to use a boundary map to realize the pullback in bounded
cohomology. A delicate point already observed by Burger and Iozzi [2]
is that a priori the slices of a boundary map does not need to preserve
the measure classes involved. To overcome such problem, we will consider
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directly the space of bounded measurable functions. Given a boundary map
ϕ : B ×X → Y for a measurable cocycle σ : Γ ×X → G, we can define

C•(ϕ) : B∞ (
Y •+1;R

)G → L∞
w∗

(
B•+1; L∞(X;R)

)Γ

(C•(ϕ)(ψ)) (b0, . . . , b•)(x) := ψ(ϕ(b0, x), . . . , ϕ(b•, x)),

where we tacitly postcomposed with the projection on the essentially boun-
ded functions on B. By [17, Lemma 4.2] the map C•(ϕ) is a norm non-
increasing cochain map which induces

H•(ϕ) : H•
(

B∞ (
Y •+1;R

)G
, δ•

)
→ H•

b (Γ; L∞(X;R)) ,

H•(ϕ)([ψ]) := [C•(ϕ)(ψ)] .

By applying [2, Proposition 2.1] we obtain the following commutative dia-
gram

(4.1) H•
(

B∞ (
Y •+1;R

)G
, δ•

)
c•

//

H•(ϕ)

��

H•(G;R)

H•
b (σ)tt

H•
b(Γ; L∞(X;R)).

Example 4.12. — Let Γ be a finitely generated group and let G be
a semisimple Hermitian Lie group with symmetric space X . Consider a
Zariski dense measurable cocycle σ : Γ × X → G, where (X,µ) is an er-
godic standard Borel probability Γ-space. By Theorem 4.11 there exists a
boundary map ϕ : B×X → SX whose slices are Zariski dense and preserve
transversality. By Example 4.7 we have that c2[βX ] is the bounded Kähler
class kb

G. By Definition 4.9 we know that H2
b(σ)(kb

G) is the parametrized
Kähler class. Thus Diagram 4.1 shows that a canonical non-trivial repre-
sentative of the parametrized Kähler class is given by C2(ϕ)(βX ), namely

C2(ϕ)(βX )(b0, b1, b2)(x) := βX (ϕ(b0, x), ϕ(b1, x), ϕ2(b2, x)).

5. Main results

5.1. Rigidity for Zariski dense cocycles

Let Γ be a finitely generated group and let (X,µ) be an ergodic standard
Borel probability Γ-space. Consider a simple Hermitian Lie group G not of
tube type. In this section we want to show how the parametrized Kähler
class encodes all the information associated to a Zariski dense G-valued
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measurable cocycle. More precisely, we will see that we can embed the
Zariski dense G-orbital cohomology in the second bounded cohomology
group of Γ with L∞(X;R)-coefficients.

To see this we start recalling the following more general result.

Theorem 5.1 ([22, Theorem 2]). — Let σi : Γ × X → Gi, for i =
1, . . . , n, be a measurable cocycles into a simple Hermitian Lie group Gi

not of tube type. Suppose that the cocycles are Zariski dense and pairwise
inequivalent. Then the subset{

H2
b(σi)

(
kb

Gi

)}
i=1, ..., n

⊂ H2
b (Γ; L∞(X;R))

is linearly independent over L∞(X;Z).

Sketch of the proof. — By Theorem 4.11 there exists a boundary map
ϕi : B×X → Si, where B is a Γ-boundary and Si is the Shilov boundary for
Gi. Notice that by [15, Corollary 2.6] there are no coboundaries in degree 2.
Thanks to Example 4.12 any trivial combination

n∑
i=1

miH2
b(σi)

(
kb

Gi

)
= 0,

where mi ∈ L∞(X;Z), boils down to the following equation

(5.1)
n∑

i=1
mi(x)βi(ϕi(b0, x), ϕi(b1, x), ϕi(b2, x)) = 0,

for almost every b0, b1, b2 ∈ B and x ∈ X. Here βi is the Bergman cocycle
on the Shilov boundary Si, for i = 1, . . . , n. Using Equation (2.2) we can
rewrite the previous linear combination in terms of complex Hermitian
triple products, namely

n∏
i=1

⟨⟨ϕi(b0, x), ϕi(b1, x), ϕi(b2, x)⟩⟩mi(x)
C = 1,

for almost every b0, b1, b2 ∈ B, x ∈ X.
By the transitivity of Gi on transverse pairs in Si, one can find a cocycle

σ̃i cohomologous to σ with boundary map ϕ̃i : B × X → Si, such that
the images ϕ̃i(b0, x) = ηi and ϕ̃i(b1, x) = ζi do not depend on x ∈ X and
furthermore it holds that

(5.2)
n∏

i=1

〈〈
ηi, ζi, ϕ̃i(b2, x)

〉〉mi(x)

C
= 1,

for almost every b2 ∈ B, x ∈ X.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



ORBITAL COHOMOLOGY AND KÄHLER RIGIDITY 129

If we consider the product cocycle

σ̃ : Γ ×X →
n∏

i=1
Gi, (γ, x) 7→ (σ̃i(γ, x))i=1,...,n

with boundary map

ϕ̃ : B ×X →
n∏

i=1
Si, (b, x) 7→

(
ϕ̃i(b, x)

)
i=1, ..., n

,

Equation (5.2) and the fact that each Gi is not of tube type imply that
almost every x-slice of ϕ̃ is not Zariski dense, since the Zariski closure of
the essential image of almost each slice is contained in the proper Zariski
closed set {

(ω1, . . . , ωn) ∈
n∏

i=1
Oηi,ζi

∣∣∣∣∣
n∏

i=1
P

mi(x)
i (ωi) = 1

}
.

Here Oηi,ζi
is the Zariski open set defined at the end of Section 2. By

Theorem 4.11 the algebraic hull L of σ̃ must be a proper subgroup of the
product

∏n
i=1 Gi, where Gi is the connected adjoint simple algebraic group

obtained by complexifying Gi, for i = 1, . . . , n. Since L surjects on each
Gi via projections and Gi are simple, there must exist at least one R-
isomorphism s : Gi → Gj for i ̸= j ∈ {1, . . . , n}. This is a contradiction
to the inequivalence of the σi’s. □

Using Theorem 5.1 one can show the following:

Theorem 5.2 ([22, Theorem 1]). — Let Γ be a finitely generated group
and (X,µ) be an essentially free ergodic standard Borel probability Γ-space.
Consider a simple Hermitian Lie group G. The map

KX : H1
ZD(Γ ↷ X;G) → H2

b(Γ; L∞(X;R)), KX([σ]) := H2
b(σ)

(
kb

G

)
is an injection whose image avoids the trivial class. As a consequence the
parametrized Kähler class is a complete invariant for the orbital cohomol-
ogy class of a Zariski dense cocycle σ.

Sketch of the proof. — Let σ1, σ2 : Γ × X → G be two Zariski dense
cocycles. We need to show that if H2

b(σ1) = H2
b(σ2), then σ1 and σ2 are

cohomologous. By Theorem 5.1 we have that σ1 and σ2 are equivalent, thus
there exists a R-isomorphisms s : G → G of the connected adjoint simple
algebraic group G associated to G, such that s ◦ σ1 is cohomologous to σ2.
Since the pullback is equivariant with respect to the sign of s, we have that

0 = H2
b(σ1) − H2

b(σ2) = H2
b(σ1) − ε(s)H2

b(σ1) = (1 − ε(s))H2
b(σ1).
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Again Theorem 5.1 implies that H2
b(σ1) is not trivial, thus ε(s) = 1 and

the statement follows. □

The previous theorem has important consequences on the computation
of the orbital cohomology when Γ is either a higher rank lattice or it is a
lattice in a product.

Proposition 5.3 ([22, Proposition 4.1]). — Let Γ < H = H(R)◦ be a
lattice, where H is a connected, simply connected, almost simple R-group
of real rank at least 2. Let (X,µ) be an essentially free ergodic standard
Borel probability Γ-space and let G be a simple Hermitian Lie group. If
H2

b(Γ;R) ∼= 0 then ∣∣H1
ZD(Γ ↷ X;G)

∣∣ = 0.

Proof. — Thanks to Theorem 5.2 we have an injection

KX : H1
ZD(Γ ↷ X;G) → H2

b(Γ; L∞(X;R))

whose image avoids the trivial class. Since L∞(X;R) is semiseparable as
Banach G-module, by [14, Corollary 1.6] we have the following chain of
isomorphisms

H2
b (Γ; L∞(X;R)) ∼= H2

b

(
Γ; L∞(X;R)Γ) ∼= H2

b(Γ;R),

where the last isomorphism is due to the ergodicity of (X,µ). By assump-
tion the statement now follows. □

We refer either [5, 6] to see when the hypothesis H2
b(Γ;R) ∼= 0 is satisfied.

In virtue of Proposition 5.3 we have a vanishing result for the Zariski dense
orbital cohomology. Such an explicit result is usually difficult to obtain
and this is exactly why we should understand the importance of having a
rigidity result as Theorem 5.2.

We conclude with the case of products. Recall that a lattice Γ < H :=
H1 × . . . × Hn in a product of locally compact second countable groups
is irreducible if it projects densely on each Hi. Additionally, we say that
H acts irreducibly on a standard Borel probability space (X,µ) if each
subgroup obtained by omitting one factor of H acts ergodically on X.

Proposition 5.4 ([22, Proposition 4.4]). — Consider n ⩾ 2 and con-
sider an irreducible lattice Γ < H := H1 × . . .×Hn in a product of locally
compact second countable groups such that H2

cb(Hi;R) = 0 for i = 1, . . . , n.
Let (X,µ) be an essentially free standard Borel H-irreducible probability
space and consider a simple Hermitian Lie group G. Then∣∣H1

ZD(Γ ↷ X;G)
∣∣ = 0.
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Proof. — By [14, Corollary 9] the inclusion

L∞(X;R) → L2(X;R)

induces an injection in bounded cohomology. Precomposing with KX , we
obtain an injection

H1
ZD(Γ ↷ X;G) → H2

b

(
Γ; L2(X;R)

)
which avoids the trivial class. If we set

H ′
i :=

∏
j ̸=i

Hj ,

by [6, Theorem 16] we have that

H2
b

(
Γ; L2(X;R)

) ∼=
n⊕

i=1
H2

b

(
Hi; L2(X;R)H′

i

)
∼= H2

b(Hi;R)

and the statement follows. □

5.2. Maximal measurable cocycles

So far we have seen the theory of pullback along a Zariski dense cocycle
Γ ×X → G with values in a simple Hermitian Lie group in full generality.
Our next goal is to assume some more restrictive conditions on both Γ and
G and to introduce a new family of measurable cocycles, namely maximal
ones. We mainly refer to [21] for more details about this topic.

We set Gp,q := PU(p, q). Consider a lattice Γ < Gn,1, with n ⩾ 2, and
a standard Borel probability Γ-space (X,µ). Since the measure µ is finite,
the change of coefficients

H2
b(Γ;R) → H2

b(Γ; L∞(X;R)).

admits a left inverse induced by integration along X. More precisely, if we
consider

I•
X : Cb

(
Γ•+1; L∞(X;R)

)
→ Cb

(
Γ•+1;R

)
,

I•
X(ψ)(γ0, . . . , γ•) :=

∫
X

ψ(γ0, . . . , γ•)(x)dµ(x),

we have that IX is a norm non-increasing cochain map which induces a
map at a the level of cohomology groups

I•
X : H•

b(Γ; L∞(X;R)) → H•
b(Γ;R).
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Since Γ is a lattice (and hence the quotient Γ\Gn,1 has finite Haar measure),
also the restriction map

H2
cb(Gn,1;R) → H2

b(Γ;R)

admits an inverse, this time a right one. If we define the transfer map as

T•
b : Cb

(
Γ•+1;R

)
→ Ccb

(
G•+1

n,1 ;R
)
,

(Tbψ) (g0, . . . , g•) :=
∫

Γ\PU(n,1)
ψ(gg0, . . . , gg•)dµΓ\PU(n,1)(g),

we obtain a cochain map inducing the cohomological transfer map

T•
b : H•

b(Γ;R) → H•
cb(Gn,1;R).

Given a measurable cocycle σ : Γ × X → Gp,q, with 1 ⩽ p ⩽ q, we
can consider the image of the Kähler class kb

p,q ∈ H2
b(Gp,q;R) through the

following composition(
T2

b ◦ I2
X ◦ H2

b(σ)
) (
kb

p,q

)
∈ H2

b(Gn,1;R).

Since the latter group is one dimensional and generated by the Kähler class
kb

n,1, we are allowed to give the following:

Definition 5.5. — The Toledo invariant associated to a measurable
cocycle σ : Γ × X → Gp,q is the real number tb(σ) which satisfies the
following identity

(5.3)
(
T2

b ◦ I2
b ◦ H2

b(σ)
) (
kb

p,q

)
= tb(σ)kb

n,1.

The Toledo invariant of a measurable cocycle σ : Γ × X → Gp,q is
invariant along the orbital cohomology class of σ. As a consequence it
induces a function

tb : H1 (Γ ↷ X;Gp,q) → R.

The image of the previous function is contained in a bounded interval, in
fact the Toledo invariant satisfies

|tb(σ)| ⩽ rk(Gp,q) = min{p, q} = p

and those cocycles which attain the extremal values are called maximal
cocycles. This allows to define the maximal orbital cohomology H1

max(Γ ↷
X;Gp,q) as the preimage along the Toledo function of the extremal values.
Additionally, we denote by H1

max,ZD(Γ ↷ X;Gp,q) the subset of maximal
Zariski dense classes.
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Theorem 5.6 ([21, Theorem 2]). — Let Γ ⩽ Gn,1, with n ⩾ 2, be a
lattice and let (X,µ) be an ergodic standard Borel probability Γ-space. Any
maximal Zariski dense cocycle in Gp,q, where 1 ⩽ p ⩽ q, is cohomologous
to a representation Γ → Gp,q with the same properties.

Sketch of the proof. — We assume that the Zariski dense cocycle σ :
Γ ×X → Gp,q is maximal. Up to changing it sign by composing it with an
antiholomorphic isomorphism, we can suppose that σ is positively maximal.
Additionally, since σ is Zariski dense, we can apply Theorem 4.11 to get a
boundary map ϕ : ∂∞Hn

C × X → Sp,q, where Sp,q is the Shilov boundary
associated to Gp,q.

Since in degree 2 there are no coboundaries [15, Corollary 2.6], we can
rewrite Equation (5.3) as follows

(5.4)
∫

Γ\Gn,1

∫
X

βp,q

(
ϕ(gb0, x), ϕ(gb1, x), ϕ(gb2, x)

)
dµ(x)dµΓ\Gn,1(g)

= tb(σ)βn,1(b0, b1, b2),

for almost every b0, b1, b2 ∈ B and x ∈ X. The equation can be actually ex-
tended to every triple b0, b1, b2 of points that are pairwise distinct. Since ϕx

is Zariski dense [21, Proposition 4.4] for almost every x ∈ X, Equation (5.4)
and [20, Theorem 1.6] imply that ϕx is the restriction of a rational map
for almost every x ∈ X (both ∂∞Hn

C and Sp,q are the real points of some
real algebraic variety). Thanks to this rationality condition, one can find a
measurable map f : X → Gp,q such that

(5.5) ϕ(b, x) = f(x)ϕ0(b),

where ϕ0 : ∂∞Hn
C → Sp,q is still rational and Zariski dense.

By setting

σ̃ : Γ ×X → Gp,q, σ̃(γ, x) := f(γ.x)−1σ(γ, x)f(x),

one can see that the separation of variables contained in Equation (5.5)
implies that σ̃ does not depend on x ∈ X and hence it is the desired
representation Γ → Gp,q. □

Corollary 5.7 ([21, Proposition 3]). — Let Γ ⩽ Gn,1, with n ⩾ 2,
be a lattice and let (X,µ) be an essentially free ergodic standard Borel
probability Γ-space. There is no maximal Zariski dense cocycle Γ × X →
Gp,q when 1 < p < q. Equivalently∣∣H1

max,ZD (Γ ↷ X;Gp,q)
∣∣ = 0.
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Proof. — Let σ : Γ ×X → Gp,q be a maximal Zariski dense cocycle. By
Theorem 5.6 we have a maximal Zariski dense representation Γ → Gp,q

contained in the orbital cohomology class of σ. By [20, Corollary 1.2] there
are no maximal Zariski dense representation when 1 < p < q. □
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