In this paper, by using the Atiyah–Patodi–Singer index theorem, we obtain a formula for the signature of a flat symplectic vector bundle over a surface with boundary, which is related to the Toledo invariant of a surface group representation in the real symplectic group and invariant on the boundary. As an application, we obtain a Milnor–Wood type inequality for the signature. In particular, we give a new proof of the Milnor–Wood inequality for the Toledo invariant in the case of closed surfaces and obtain some modified inequalities for surfaces with boundary.
Keywords: Signature, Toledo invariant, surface group representation, real symplectic group, eta invariant, Rho invariant
Inkang Kim 1 ; Pierre Pansu 2 ; Xueyuan Wan 3
@article{TSG_2021-2022__37__1_0, author = {Inkang Kim and Pierre Pansu and Xueyuan Wan}, title = {Signature, {Toledo} and eta invariants for surface group representations in the real symplectic group}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {1--17}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {37}, year = {2021-2022}, doi = {10.5802/tsg.381}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.381/} }
TY - JOUR AU - Inkang Kim AU - Pierre Pansu AU - Xueyuan Wan TI - Signature, Toledo and eta invariants for surface group representations in the real symplectic group JO - Séminaire de théorie spectrale et géométrie PY - 2021-2022 SP - 1 EP - 17 VL - 37 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.381/ DO - 10.5802/tsg.381 LA - en ID - TSG_2021-2022__37__1_0 ER -
%0 Journal Article %A Inkang Kim %A Pierre Pansu %A Xueyuan Wan %T Signature, Toledo and eta invariants for surface group representations in the real symplectic group %J Séminaire de théorie spectrale et géométrie %D 2021-2022 %P 1-17 %V 37 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.381/ %R 10.5802/tsg.381 %G en %F TSG_2021-2022__37__1_0
Inkang Kim; Pierre Pansu; Xueyuan Wan. Signature, Toledo and eta invariants for surface group representations in the real symplectic group. Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 1-17. doi : 10.5802/tsg.381. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.381/
[1] The logarithm of the Dedekind -function, Math. Ann., Volume 278 (1987) no. 1-4, pp. 335-380 | DOI | MR | Zbl
[2] Spectral asymmetry and Riemannian geometry. I, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 43-69 | DOI | MR | Zbl
[3] Spectral asymmetry and Riemannian geometry. II, Math. Proc. Camb. Philos. Soc., Volume 78 (1975) no. 3, pp. 405-432 | DOI | MR | Zbl
[4] Index type invariants for twisted signature complexes and homotopy invariance, Math. Proc. Camb. Philos. Soc., Volume 156 (2014) no. 3, pp. 473-503 | DOI | MR | Zbl
[5] Maximal representations of surface groups: symplectic Anosov structures, Pure Appl. Math. Q., Volume 1 (2005) no. 3, pp. 543-590 | DOI | MR | Zbl
[6] Surface group representations with maximal Toledo invariant, Ann. Math., Volume 172 (2010) no. 1, pp. 517-566 | DOI | Zbl
[7] Lecture notes in algebraic topology, Graduate Studies in Mathematics, 35, American Mathematical Society, 2001 | MR | Zbl
[8] The Gromov norm of the Kaehler class of symmetric domains, Math. Ann., Volume 276 (1987) no. 3, pp. 425-432 | DOI | MR | Zbl
[9] Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math., Volume 136 (1999) no. 3, pp. 623-657 | DOI | MR | Zbl
[10] Bounds for Characteristic Numbers of Flat Bundles, Algebraic Topology, Aarhus 1978 (Lecture Notes in Mathematics), Volume 763, Springer, 1978, pp. 109-119 | DOI | MR | Zbl
[11] Maximal volume representations are Fuchsian, Geom. Dedicata, Volume 117 (2006), pp. 111-124 | DOI | MR | Zbl
[12] Bounded cohomology of discrete groups, Mathematical Surveys and Monographs, 227, American Mathematical Society, 2017 | DOI | MR | Zbl
[13] Higgs bundles and surface group representations in the real symplectic group, J. Topol., Volume 6 (2013) no. 1, pp. 64-118 | DOI | MR | Zbl
[14] Two papers which changed my life: Milnor’s seminal work on flat manifolds and bundles, Frontiers in complex dynamics. In celebration of John Milnor’s 80th birthday (Araceli Bonifant et al., eds.) (Princeton Mathematical Series), Princeton University Press, 2014, pp. 679-703 | DOI | Zbl
[15] Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, 2001 | MR | Zbl
[16] Density of Zariski density for surface groups, Duke Math. J., Volume 163 (2014) no. 9, pp. 1737-1794 | DOI | MR | Zbl
[17] Signature, Toledo invariant and surface group representations in the real symplectic group (2022) | arXiv
[18] Signature and Toledo invariants for flat unitary bundles over surfaces with boundary (2024) | arXiv
[19] On the equivalence of the definitions of volume of representations, Pac. J. Math., Volume 280 (2016) no. 1, pp. 51-68 | DOI | Zbl
[20] Volume invariant and maximal representations of discrete subgroups of Lie groups, Math. Z., Volume 276 (2014) no. 3-4, pp. 1189-1213 | DOI | MR | Zbl
[21] Complex manifolds and deformation of complex structures, Classics in Mathematics, Springer, 2005 | DOI | MR | Zbl
[22] Harmonic maps and representations of non-uniform lattices of , Ann. Inst. Fourier, Volume 58 (2008) no. 2, pp. 507-558 | DOI | Numdam | MR | Zbl
[23] Maximal representations of uniform complex hyperbolic lattices, Ann. Math., Volume 185 (2017) no. 2, pp. 493-540 | DOI | Zbl
[24] Novikov’s higher signature and families of elliptic operators, J. Differ. Geom., Volume 7 (1972), pp. 229-256 | DOI | MR | Zbl
[25] The Atiyah–Patodi–Singer index theorem, Research Notes in Mathematics, 4, A. K. Peters, 1993 | DOI | Zbl
[26] Die Signatur von lokalen Koeffizientensystemen und Faserndeln, Bonner Mathematische Schriften, 53, Mathematisches Institut der Universität Bonn, Bonn, 1972 | Zbl
[27] On the existence of a connection with curvature zero, Comment. Math. Helv., Volume 21 (1958), pp. 215-223 | DOI | MR | Zbl
[28] The eta invariant (some recent developments), Séminaire Bourbaki. Volume 1993/94. Exposés 775-789 (Astérisque), Volume 227, Société Mathématique de France, 1995, pp. 335-364 | Numdam | MR | Zbl
[29] Representations of surface groups in complex hyperbolic space, J. Differ. Geom., Volume 29 (1989) no. 1, pp. 125-133 | DOI | MR | Zbl
[30] A cocycle of the symplectic first Chern class and the Maslov index, Funct. Anal. Appl., Volume 18 (1984), pp. 35-39 | DOI | Zbl
[31] Bundles with totally disconnected structure group, Comment. Math. Helv., Volume 46 (1971), pp. 257-273 | DOI | MR | Zbl
Cité par Sources :