Signature, Toledo and eta invariants for surface group representations in the real symplectic group
Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 1-17.

In this paper, by using the Atiyah–Patodi–Singer index theorem, we obtain a formula for the signature of a flat symplectic vector bundle over a surface with boundary, which is related to the Toledo invariant of a surface group representation in the real symplectic group and ρ invariant on the boundary. As an application, we obtain a Milnor–Wood type inequality for the signature. In particular, we give a new proof of the Milnor–Wood inequality for the Toledo invariant in the case of closed surfaces and obtain some modified inequalities for surfaces with boundary.

Publié le :
DOI : 10.5802/tsg.381
Classification : 14J60, 58J20, 58J28
Keywords: Signature, Toledo invariant, surface group representation, real symplectic group, eta invariant, Rho invariant

Inkang Kim 1 ; Pierre Pansu 2 ; Xueyuan Wan 3

1 School of Mathematics, KIAS, Heogiro 85, Dongdaemun-gu Seoul, 02455 (Republic of Korea)
2 Universit Paris-Saclay, CNRS, Laboratoire de Mathématiques d’Orsay 91405 Orsay Cédex (France)
3 Mathematical Science Research Center Chongqing University of Technology, Chongqing 400054 (China)
@article{TSG_2021-2022__37__1_0,
     author = {Inkang Kim and Pierre Pansu and Xueyuan Wan},
     title = {Signature, {Toledo} and eta invariants for surface group representations in the real symplectic group},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {1--17},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {37},
     year = {2021-2022},
     doi = {10.5802/tsg.381},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.381/}
}
TY  - JOUR
AU  - Inkang Kim
AU  - Pierre Pansu
AU  - Xueyuan Wan
TI  - Signature, Toledo and eta invariants for surface group representations in the real symplectic group
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2021-2022
SP  - 1
EP  - 17
VL  - 37
PB  - Institut Fourier
PP  - Grenoble
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.381/
DO  - 10.5802/tsg.381
LA  - en
ID  - TSG_2021-2022__37__1_0
ER  - 
%0 Journal Article
%A Inkang Kim
%A Pierre Pansu
%A Xueyuan Wan
%T Signature, Toledo and eta invariants for surface group representations in the real symplectic group
%J Séminaire de théorie spectrale et géométrie
%D 2021-2022
%P 1-17
%V 37
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.381/
%R 10.5802/tsg.381
%G en
%F TSG_2021-2022__37__1_0
Inkang Kim; Pierre Pansu; Xueyuan Wan. Signature, Toledo and eta invariants for surface group representations in the real symplectic group. Séminaire de théorie spectrale et géométrie, Tome 37 (2021-2022), pp. 1-17. doi : 10.5802/tsg.381. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.381/

[1] Michael F. Atiyah The logarithm of the Dedekind η-function, Math. Ann., Volume 278 (1987) no. 1-4, pp. 335-380 | DOI | MR | Zbl

[2] Michael F. Atiyah; Vijay K. Patodi; Isadore M. Singer Spectral asymmetry and Riemannian geometry. I, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 43-69 | DOI | MR | Zbl

[3] Michael F. Atiyah; Vijay K. Patodi; Isadore M. Singer Spectral asymmetry and Riemannian geometry. II, Math. Proc. Camb. Philos. Soc., Volume 78 (1975) no. 3, pp. 405-432 | DOI | MR | Zbl

[4] Moulay T. Benameur; Varghese Mathai Index type invariants for twisted signature complexes and homotopy invariance, Math. Proc. Camb. Philos. Soc., Volume 156 (2014) no. 3, pp. 473-503 | DOI | MR | Zbl

[5] Marc Burger; Alessandra Iozzi; François Labourie; Anna Wienhard Maximal representations of surface groups: symplectic Anosov structures, Pure Appl. Math. Q., Volume 1 (2005) no. 3, pp. 543-590 | DOI | MR | Zbl

[6] Marc Burger; Alessandra Iozzi; Anna Wienhard Surface group representations with maximal Toledo invariant, Ann. Math., Volume 172 (2010) no. 1, pp. 517-566 | DOI | Zbl

[7] James F. Davis; Paul Kirk Lecture notes in algebraic topology, Graduate Studies in Mathematics, 35, American Mathematical Society, 2001 | MR | Zbl

[8] Antun Domic; Domingo Toledo The Gromov norm of the Kaehler class of symmetric domains, Math. Ann., Volume 276 (1987) no. 3, pp. 425-432 | DOI | MR | Zbl

[9] Nathan M. Dunfield Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math., Volume 136 (1999) no. 3, pp. 623-657 | DOI | MR | Zbl

[10] Johan L. Dupont Bounds for Characteristic Numbers of Flat Bundles, Algebraic Topology, Aarhus 1978 (Lecture Notes in Mathematics), Volume 763, Springer, 1978, pp. 109-119 | DOI | MR | Zbl

[11] Stefano Francaviglia; Ben Klaff Maximal volume representations are Fuchsian, Geom. Dedicata, Volume 117 (2006), pp. 111-124 | DOI | MR | Zbl

[12] Roberto Frigerio Bounded cohomology of discrete groups, Mathematical Surveys and Monographs, 227, American Mathematical Society, 2017 | DOI | MR | Zbl

[13] Oscar García-Prada; Peter B. Gothen; Ignasi Mundet i Riera Higgs bundles and surface group representations in the real symplectic group, J. Topol., Volume 6 (2013) no. 1, pp. 64-118 | DOI | MR | Zbl

[14] William M. Goldman Two papers which changed my life: Milnor’s seminal work on flat manifolds and bundles, Frontiers in complex dynamics. In celebration of John Milnor’s 80th birthday (Araceli Bonifant et al., eds.) (Princeton Mathematical Series), Princeton University Press, 2014, pp. 679-703 | DOI | Zbl

[15] Sigurdur Helgason Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, 2001 | MR | Zbl

[16] Inkang Kim; Pierre Pansu Density of Zariski density for surface groups, Duke Math. J., Volume 163 (2014) no. 9, pp. 1737-1794 | DOI | MR | Zbl

[17] Inkang Kim; Pierre Pansu; Xueyuan Wan Signature, Toledo invariant and surface group representations in the real symplectic group (2022) | arXiv

[18] Inkang Kim; Pierre Pansu; Xueyuan Wan Signature and Toledo invariants for flat unitary bundles over surfaces with boundary (2024) | arXiv

[19] Sungwoon Kim On the equivalence of the definitions of volume of representations, Pac. J. Math., Volume 280 (2016) no. 1, pp. 51-68 | DOI | Zbl

[20] Sungwoon Kim; Inkang Kim Volume invariant and maximal representations of discrete subgroups of Lie groups, Math. Z., Volume 276 (2014) no. 3-4, pp. 1189-1213 | DOI | MR | Zbl

[21] Kunihiko Kodaira Complex manifolds and deformation of complex structures, Classics in Mathematics, Springer, 2005 | DOI | MR | Zbl

[22] Vincent Koziarz; Julien Maubon Harmonic maps and representations of non-uniform lattices of PU(m,1), Ann. Inst. Fourier, Volume 58 (2008) no. 2, pp. 507-558 | DOI | Numdam | MR | Zbl

[23] Vincent Koziarz; Julien Maubon Maximal representations of uniform complex hyperbolic lattices, Ann. Math., Volume 185 (2017) no. 2, pp. 493-540 | DOI | Zbl

[24] Gheorghe Lusztig Novikov’s higher signature and families of elliptic operators, J. Differ. Geom., Volume 7 (1972), pp. 229-256 | DOI | MR | Zbl

[25] Richard B. Melrose The Atiyah–Patodi–Singer index theorem, Research Notes in Mathematics, 4, A. K. Peters, 1993 | DOI | Zbl

[26] Werner Meyer Die Signatur von lokalen Koeffizientensystemen und Faserndeln, Bonner Mathematische Schriften, 53, Mathematisches Institut der Universität Bonn, Bonn, 1972 | Zbl

[27] John W. Milnor On the existence of a connection with curvature zero, Comment. Math. Helv., Volume 21 (1958), pp. 215-223 | DOI | MR | Zbl

[28] Werner Müller The eta invariant (some recent developments), Séminaire Bourbaki. Volume 1993/94. Exposés 775-789 (Astérisque), Volume 227, Société Mathématique de France, 1995, pp. 335-364 | Numdam | MR | Zbl

[29] Domingo Toledo Representations of surface groups in complex hyperbolic space, J. Differ. Geom., Volume 29 (1989) no. 1, pp. 125-133 | DOI | MR | Zbl

[30] Vladimir G. Turaev A cocycle of the symplectic first Chern class and the Maslov index, Funct. Anal. Appl., Volume 18 (1984), pp. 35-39 | DOI | Zbl

[31] John W. Wood Bundles with totally disconnected structure group, Comment. Math. Helv., Volume 46 (1971), pp. 257-273 | DOI | MR | Zbl

Cité par Sources :