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SIGNATURE, TOLEDO AND ETA INVARIANTS FOR
SURFACE GROUP REPRESENTATIONS IN THE REAL

SYMPLECTIC GROUP

Inkang Kim, Pierre Pansu & Xueyuan Wan

Abstract. — In this paper, by using the Atiyah–Patodi–Singer index theorem,
we obtain a formula for the signature of a flat symplectic vector bundle over a
surface with boundary, which is related to the Toledo invariant of a surface group
representation in the real symplectic group and ρ invariant on the boundary. As
an application, we obtain a Milnor–Wood type inequality for the signature. In
particular, we give a new proof of the Milnor–Wood inequality for the Toledo
invariant in the case of closed surfaces and obtain some modified inequalities for
surfaces with boundary.

Introduction

Let Σ be a closed surface, and consider a surface group representation
ρ : π1(Σ) → Sp(E, Ω) into the real symplectic group Sp(E, Ω), where (E, Ω)
is a symplectic vector space. Let (E , Ω) denote the flat symplectic vector
bundle over Σ associated to the representation ρ. There is a canonical
quadratic form

∫
Σ Ω(· ∪ ·) on the cohomology H1(Σ, E). Meyer’s signature

formula [26, § 4.1, p. 19] implies that the signature of the quadratic form
is given by 4

∫
Σ c1(E , Ω), where c1(E , Ω) denotes the first Chern class of

the symplectic vector bundle (E , Ω), which can be expressed in terms of
Toledo invariant, see e.g. [16, Appendix A]. For the case of manifolds with
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boundary, Atiyah, Patodi and Singer introduced η invariant and obtained
an index theorem, which is known as Atiyah–Patodi–Singer index theorem,
see [2, Theorem 3.10]. For a surface Σ with boundary ∂Σ, one can consider
a unitary representation of the fundamental group ρ : π1(Σ) → U(n),
which gives a flat Hermitian vector bundle over Σ. Similarly, one can also
define a quadratic form on the relative cohomology with coefficients in
the flat bundle. From [3, Theorem 2.2, 2.4], the signature of the quadratic
form is exactly the η invariant (or ρ invariant). Inspired by these results,
in this paper, by using the Atiyah–Patodi–Singer index theorem, we will
consider the signature of the flat symplectic vector bundle associated to a
representation ρ : π1(Σ) → Sp(E, Ω) for the surface Σ with boundary.

Let Σ be a connected oriented surface with smooth boundary ∂Σ, and
gΣ be a Riemannian metric on Σ. Suppose that on the collar neighbor-
hood ∂Σ × [0, 1] ⊂ Σ of ∂Σ, the metric has a product form. Let ρ :
π1(Σ) → Sp(E, Ω) be a surface group representation, which gives a flat
symplectic vector bundle (E , Ω) over Σ, see Section 1.2. Consider the im-
age of twisted singular cohomology in the absolute cohomology Ĥ1(Σ, E) =
Im(H1(Σ, ∂Σ, E) → H1(Σ, E)), and the canonical quadratic form QR(·, ·) =∫

Σ Ω(· ∪ ·) on Ĥ1(Σ, E), which is non-degenerate. We denote by sign(E , Ω)
the signature of the quadratic form. For any J ∈ J (E , Ω), the set of compat-
ible complex structures, the operator AJ = J d

dx is a C-linear formally self-
adjoint elliptic first order differential operator in the space A0(∂Σ, EC|∂Σ),
see Proposition 1.1. Hence it has a discrete spectrum with real eigenval-
ues, and the η invariant η(AJ) is well-defined, see Section 1.1.3. Let ∇ be
any peripheral connection on (E , Ω, J), and let c1(E , Ω, J) denote the first
Chern class of the flat symplectic vector bundle in the de Rham cohomology
with compact support, which is defined as the first Chern class associated
to the peripheral connection ∇. By using the Atiyah–Patodi–Singer index
theorem [2, Theorem 3.10], we obtain

Theorem 0.1. — The signature of the flat symplectic vector bundle
(E , Ω) is

(0.1) sign(E , Ω) = 4
∫

Σ
c1(E , Ω, J) + η(AJ).

For the case of closed surfaces, the above theorem was obtained by
Meyer [26, § 4.1, p. 19], and by Lusztig [24, § 2] considering the signa-
ture of a flat U(p, q)-Hermitian vector bundle. For the case of surfaces with
boundary, and a surface group representation in U(p, q), the above theorem
was proved by Atiyah [1, (3.1)] under the assumption that the representa-
tion on each component of the boundary is elliptic. By using the formula
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SIGNATURE, TOLEDO AND ETA INVARIANTS FOR SURFACE GROUP 3

of signature for elliptic case, Atiyah [1, Theorem 2.13] proved for general
case that the signature can be expressed as another kind of formula in
terms of the relative Chern class of a certain line bundle, see [1, § 3] for
the proof. In our paper [18], we consider the signature, Toledo invariant,
ρ invariant and Milnor–Wood type inequality associated with the surface
group representations in the U(p, q)-group.

Next, we will show that the first term 4
∫

Σ c1(E , Ω, J) is related to the
Toledo invariant T(Σ, ρ). For a closed surface Σ, the Toledo invariant was
defined in [8, 29] by considering a surface group representation ρ : π1(Σ) →
PSU(1, n) of its fundamental group in the group of motions of complex
hyperbolic n-space. In [6], Burger, Iozzi and Wienhard extended the defi-
nition of the Toledo invariant to surfaces with boundary and obtained the
Milnor–Wood inequality | T(Σ, ρ)| ⩽ rank(X )|χ(Σ)| by using the meth-
ods of bounded cohomology. More precisely, consider a representation ρ :
π1(Σ) → G into a Lie group G which is of type (RH), so that the associated
symmetric space X = G/K is a Hermitian symmetric space of noncompact
type. Let ωX denote the (unique) Kähler form such that the minimal holo-
morphic sectional curvature of the associated Hermitian metric is −1. The
Kähler form ωX gives a bounded Kähler class κb

G ∈ H2
c,b(G,R). Consider

the pullback in bounded cohomology, ρ∗
b

(
κb

G

)
∈ H2

b (π1(Σ),R) ∼= H2
b(Σ,R).

The canonical map j∂Σ : H2
b(Σ, ∂Σ,R) → H2

b(Σ,R) is an isomorphism, and
the Toledo invariant is defined as

T(Σ, ρ) =
〈
j−1

∂Σρ∗
b

(
κb

G

)
, [Σ, ∂Σ]

〉
,

where j−1
∂Σρ∗

b

(
κb

G

)
is considered as an ordinary relative class and [Σ, ∂Σ]

is the relative fundamental class. If ∂Σ = ∅, then the Toledo invariant is
given by T(Σ, ρ) =

∫
Σ f∗ωX , where f : Σ̃ → X denotes any ρ-equivariant

smooth map. For a manifold with cusps, there are also several equivalent
definitions of the volume invariant, which is a natural generalization of
Toledo invariant for higher dimensional manifolds, see e.g. [9, 11, 19, 20, 22].

In our case, G = Sp(E, Ω) and K is the maximal compact subgroup of G,
which is isomorphic to the unitary group. Then the associated symmetric
space X = G/K can be identified with the bounded symmetric domain
DIII

n of type III, where dim E = 2n. It is also isomorphic to the space
J (E, Ω) of all compatible complex structures on (E, Ω). Let ωDIII

n
denote

the Kähler form with holomorphic sectional curvature in [−1, −1/n], see
Appendix A. For any J ∈ J (E , Ω), J is equivalent to a ρ-equivariant map
J̃ : Σ̃ → DIII

n . The form J̃∗ωDIII
n

is a ρ-equivariant form on Σ̃ and descends
to a form on Σ. For each L ∈ G, there exist a L-invariant 1-form α with
dα = ωDIII

n
. Let χi ∈ [0, 1] be a smooth cut-off function which is equal

VOLUME 37 (2021-2022)



4 INKANG KIM, PIERRE PANSU & XUEYUAN WAN

to 1 near the boundary component ci and vanishes outside a small collar
neighborhood of ci. Then one can define the following de Rham cohomology
class with compact support[

ρ∗ωDIII
n

]
c

=
[

J̃∗ωDIII
n

− d

(
q∑

i=1
χiJ̃∗αi

)]
c

,

where αi is a ρ(ci)-invariant 1-form with dαi = ωDIII
n

, q is the number
of components of ∂Σ. Following [22, Proposition-definition 4.1], the class
[ρ∗ωDIII

n
]c is independent of J and depends only on the conjugacy class of

ρ. The ρ invariant is defined by

ρ(∂Σ) = 1
π

q∑
i=1

∫
ci

J̃∗αi + η(AJ),

which is a natural generalization of Atiyah–Patodi–Singer ρ invariant for
unitary representations. Let Jo(E , Ω) denote the space of compatible com-
plex structures J, which is the pullback of a compatible complex struc-
ture on E|∂Σ when restricted to a small collar neighborhood of ∂Σ. If
J ∈ Jo(E , Ω), then the form J̃∗ωDIII

n
has compact support on Σo := Σ\∂Σ.

Theorem 0.2. — For any J ∈ Jo(E , Ω), the Toledo invariant T(Σ, ρ)
satisfies

(0.2) T(Σ, ρ) = 1
2π

∫
Σ

[
ρ∗ωDIII

n

]
c

= 2
∫

Σ
c1(E , Ω, J) − 1

2π

q∑
i=1

∫
ci

J̃∗αi.

Hence the signature can be given by the following formula:

(0.3) sign(E , Ω) = 2 T(Σ, ρ) + ρ(∂Σ).

There is a bound for the Toledo invariant, which is known as Milnor–
Wood inequality [27, 31]. It can be thought of as an obstruction for a circle
bundle to admit a flat structure, see also [12, 14]. This inequality and the
maximal representations were widely studied, see e.g. [5, 6, 8, 10, 13, 22,
23, 29, 30]. Here we will deduce a Milnor–Wood type inequality for the
signature by using the formula (0.3).

Theorem 0.3. — The signature satisfies the following Milnor–Wood
type inequality:

| sign(E , Ω)| ⩽ dim E · |χ(Σ)|.

In particular, if Σ is closed, then sign(E , Ω) = 2 T(Σ, ρ) and we obtain the
Milnor–Wood inequality for the Toledo invariant in the case of the surface
group representations in the real symplectic group.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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Corollary 0.4 (Turaev [30]). — The Toledo invariant satisfies

| T(Σ, ρ)| ⩽ dim E

2 |χ(Σ)|.

For the case of dim E = 2, Sp(E, Ω) ∼= SL(2,R), we obtain the following
modified Milnor–Wood inequalities (0.4).

Proposition 0.5. — For any representation ρ : π1(Σ) → SL(2,R), one
has

(0.4) − |χ(Σ)| − 1 +
∑

ρ(ck) is elliptic

θk

π

⩽ T(Σ, ρ) ⩽ |χ(Σ)| + 1 −
∑

ρ(ck) is elliptic

(
1 − θk

π

)
,

where θk ∈ (0, π) such that [R(θk)] is conjugate to [ρ(ck)] ∈ PSL(2,R) =
SL(2,R)/{±I}, and [•] denotes the class in

PSL(2,R), R(θk) =
(

cos θk − sin θk

sin θk cos θk

)
.

1. Some backgrounds

1.1. Symplectic vector bundle and η invariant over a circle

In this section, we will consider the flat symplectic vector bundle E as-
sociated with a representation ρ of the fundamental group of the circle S1

into the real symplectic group Sp(E, Ω), and define a first order elliptic
self-adjoint differential operator AJ, and we will recall the definition of η

invariant η(AJ) for the operator, one can refer to [2, 28] for the η invariant.

1.1.1. Symplectic vector bundle

Let (E, Ω) be a real symplectic vector space, where Ω is a symplectic
form. For any symplectic linear transformation L ∈ Sp(E, Ω), consider a
representation ρ(γ0) = L, where γ0 denotes the generator of π1(S1), which
is given by γ0(x) = eix, 0 ⩽ x ⩽ 2π. Then the representation defines a flat
vector bundle

E = R ×ρ E = (R × E)/ ∼

VOLUME 37 (2021-2022)



6 INKANG KIM, PIERRE PANSU & XUEYUAN WAN

over S1, where (x1, e1) ∼ (x2, e2) if x2 = x1 +2πk, k ∈ Z and e2 = L−k(e1).
Each global section of E is equivalent to a map s : R → E satisfies the ρ-
equivariant condition s(x + 2π) = L−1s(x).

A complex structure on a real vector space E is an automorphism J :
E → E such that J2 = − Id. A complex structure J on a real symplectic
vector space (E, Ω) is called compatible with Ω (or Ω-compatible) if Ω(·, J ·)
defines a positive definite inner product. We denote by J (E, Ω) the space
of all Ω-compatible complex structures on (E, Ω). In particular, one has
J (E, Ω) ⊂ Sp(E, Ω).

Denote by J (E , Ω) = Σ̃×ρJ (E, Ω) the space of all ρ-equivariant complex
structures in J (E, Ω). For any symplectic transformation L ∈ Sp(E, Ω)
which can be written as L = ± exp(2πB), where B ∈ sp(E, Ω), i.e. B⊤Ω +
ΩB = 0, we can find a canonical complex structure J ∈ J (E , Ω) for any
given J ∈ J (E, Ω). In fact, for any J ∈ J (E, Ω), we define

J(x) = exp(−xB)J exp(xB) ∈ J (E, Ω),

which satisfies J(x+2π) = L−1J(x)L and thus gives a complex structure J
on the flat vector bundle E . Hence J ∈ J (E , Ω). But in general, L cannot
be written as L = ± exp(2πB) except for Sp(2,R), hence one needs to
choose another complex structure on E .

There exists a canonical flat connection d on E , which is induced from the
trivial vector bundle R × E → R. The holonomy representation of the flat
connection d is just the representation ρ. Denote by A0(S1, E) the space of
all smooth sections of E , which can be identified with the space A0(R, E)L

of all ρ-equivariant smooth maps s : R → E. There is a standard L2-metric
on the space A0(S1, E) ∼= A0(R, E)L using the inner product Ω(·, J·) and
the metric dx ⊗ dx on S1, i.e.

∫
S1 Ω(·, J·)dx.

1.1.2. First order differential operator

Let (E, Ω) be a real symplectic vector space. By C-linear extension, Ω
is also a symplectic form on the complex vector space EC = E ⊗ C. For
any L ∈ Sp(E, Ω), it can be viewed as an element in Sp(EC, Ω) by C-linear
extension. Since

EC = E ⊗ C = R ×ρ EC,

so the space A0(S1, EC) of all smooth sections of EC can be identified with
the space A0(R, EC)L of all smooth ρ-equivariant maps from R to EC. For
any J ∈ J (E , Ω), we can also extend it to a C-linear transformation of EC.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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Consider the following C-linear first order differential operator

AJ := J d

dx
(1.1)

which acts on the space A0(R, EC)L ∼= A0(S1, EC). Denote

H(e1, e2) = 2Ω(e1, Je2).(1.2)

for any e1, e2 ∈ EC|x, x ∈ [0, 2π]. One can check that H is a Hermitian
metric on EC, the Hermitian inner product is denoted by

(e1, e2) := H(e1, e2).

The global L2-inner product on A0(S1, EC) is defined as

⟨·, ·⟩ =
∫

S1
(·, ·)dx = 2

∫
S1

Ω(·, J·)dx.(1.3)

Proposition 1.1. — AJ is a C-linear formally self-adjoint elliptic first
order differential operator in the space A0(S1, EC).

Proof. — It is obvious that AJ is C-linear, first order and elliptic, so we
just need to prove AJ is formally self-adjoint. For any s1, s2 ∈ A0(S1, EC),
one has

⟨AJs1, s2⟩ − ⟨s1, AJs2⟩ = 2
∫

S1

(
Ω
(

d

dx
s1, s2

)
+ Ω

(
s1,

d

dx
s2

))
dx

= 2
∫

S1
d(Ω(s1, s2)) = 0,

which completes the proof. □

Remark 1.2. — The operator AJ has a natural extension in the Hilbert
space L2(S1, EC), we also denote it by AJ, see e.g. [21, Definition 7.1 in
Appendix]. From Proposition 1.1, AJ is formally self-adjoint and elliptic, so
AJ is self-adjoint in the Hilbert space L2(S1, EC), see e.g. [21, Theorem 7.2
in Appendix].

1.1.3. η invariant

For every elliptic self-adjoint differential operator A, which acts on a Her-
mitian vector bundle over a closed manifold, the operator A has a discrete
spectrum with real eigenvalues. Let λj run over the eigenvalues of A, then
the η function of A is defined as

ηA(s) =
∑

λj ̸=0

sign λj

|λj |s
,

VOLUME 37 (2021-2022)



8 INKANG KIM, PIERRE PANSU & XUEYUAN WAN

where s ∈ C. The η function admits a meromorphic continuation to the
whole complex plane and is holomorphic at s = 0. The special value ηA(0) is
then called the η invariant of the operator A, and we denote the η invariant
by

η(A) = ηA(0).(1.4)

Applying this general notion to the operator AJ, AJ has discrete spectrum
consisting of real eigenvalues λ of finite multiplicity, and the η invariant
η(AJ) of AJ is defined by (1.4).

Example 1.3. — For any representation

ρ : π1(S1) → Sp(2,R) = SL(2,R),

and the operator
AJ = J d

dx
,

where J := exp(−xB)J exp(xB), and L = ± exp(2πB) ∈ Sp(2,R) denotes
the image of the generator of π1(S1), the η invariant η(AJ) can be explicitly
calculated. See [18, Appendix].

1.2. Signature of flat symplectic vector bundles

In this section, we will define the signature of a flat symplectic vector
bundle, and show it can be expressed as the difference of two L2-indices.

Let Σ be a connected oriented surface with smooth boundary ∂Σ, each
component of ∂Σ is homeomorphic to S1, let ι : ∂Σ → Σ denote the natural
inclusion. Let (E, Ω) be a real symplectic vector space, and ρ : π1(Σ) →
Sp(E, Ω) be a representation from the fundamental group π1(Σ) of Σ into
the real symplectic group Sp(E, Ω). The representation ρ gives a flat vector
bundle E = Σ̃ ×ρ E over Σ. Any element of A∗(Σ, E) can be viewed as a ρ-
equivariant element in A∗(Σ̃,R)⊗E, where ρ-equivariant means (γ−1)∗ω ⊗
ρ(γ)v = ω ⊗ v for ω ∈ A∗(Σ̃,R) and v ∈ E. There exists a canonical flat
connection d on the flat bundle E , which is defined by d(ω ⊗ v) := dω ⊗ v.
One can also refer to [4, Section 1.1] for the representations, flat bundles
and the canonical flat connection.

1.2.1. Definition of signature

Let H∗(Σ, E) (resp. H∗(Σ, ∂Σ, E)) denote the (resp. relative) twisted sin-
gular cohomology, we refer to [7, Chapter 5] for the definitions. Set

Ĥ1(Σ, E) := Im
(
H1(Σ, ∂Σ, E) → H1(Σ, E)

)
.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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There exists a natural quadratic form

QR : Ĥ1(Σ, E) × Ĥ1(Σ, E) → R

QR([a], [b]) =
∫

Σ
Ω([a] ∪ [b]).

By the same argument as in [2, p. 65], the form QR is non-degenerate due to
Poincaré duality. Moreover, QR is symmetric, i.e. QR([a], [b]) = QR([b], [a]).
If Ĥ1(Σ, E) = H + ⊕ H − such that QR is positive definite on H + and
negative definite on H −, then the signature of (E , Ω) is defined as the
signature of the symmetric bilinear form QR, that is,

sign(E , Ω) := sign(QR) = dim H + − dim H −.

By C-linear extension, Ω can be viewed as a symplectic form on EC. For
this symplectic vector bundle (EC, Ω), we obtain a complex quadratic form

QC : Ĥ1(Σ, EC) × Ĥ1(Σ, EC) → C

QC([a], [b]) =
∫

Σ
Ω([a] ∪ [b]),

where Ĥ1(Σ, EC) := Im(H1(Σ, ∂Σ, EC) → H1(Σ, EC)). For any [a], [b] ∈
Ĥ1(Σ, EC), one has QC([a], [b]) = QC([b], [a]), which means QC is a Her-
mitian form. Naturally, one can define the signature sign(EC, Ω) of (EC, Ω).
We now prove that the two signatures sign(E , Ω) and sign(EC, Ω) are equal.

Proposition 1.4. — sign(EC, Ω) = sign(ER, Ω).

Proof. — Since Ĥ1(Σ, E) = H + ⊕ H − and Ĥ1(Σ, EC) = Ĥ1(Σ, E) ⊗ C,
so

Ĥ1(Σ, EC) = H +
C ⊕ H −

C ,

where H ±
C := H ± ⊗ C, and dimC H ±

C = dimR H ±. Hence

sign(EC, Ω) = dimC H +
C − dimC H −

C

= dimR H + − dimR H −

= sign(ER, Ω).

The proof is complete. □

VOLUME 37 (2021-2022)



10 INKANG KIM, PIERRE PANSU & XUEYUAN WAN

2. Sketch of proofs

Now we briefly explain the proof of the above results. All the details
appear in [17, 18]. By complexification, we consider the complex vector
bundle EC = E ⊗ C which is equipped with the symplectic form Ω. The
real quadratic from QR can be extended to a non-degenerate quadratic
form QC(·, ·) =

∫
Σ Ω(· ∪ ·) on Ĥ1(Σ, EC). We denote by sign(EC, Ω) the

signature of the quadratic form on Ĥ1(Σ, EC), which equals sign(E , Ω) for
the real symplectic vector bundle (E , Ω). Let gΣ be a Riemannian metric
on Σ which has the product form gΣ = du2 + g∂Σ on ∂Σ × [0, 1]. For any
complex structure J ∈ J (E , Ω), one can define the Hermitian inner product
(·, ·) = 2Ω(·, J·) and the global L2-inner product ⟨·, ·⟩. The operator ∗J
satisfies (∗J)2 = Id when acting on the space ∧1T ∗Σ ⊗ EC. Let ∧± denote
the ±1-eigenspaces of ∗J, and denote by π± = 1±∗J

2 : ∧1T ∗Σ ⊗ EC →
∧± the natural projections. Set d± = π± ◦ d, where d is the canonical
flat connection on the space A∗(Σ, EC). The operators d± have the form
d± = σ±( ∂

∂u + A±
J ), where σ± : EC → ∧± are bundle isomorphisms, and

A±
J = ±AJ are the first order elliptic formally self-adjoint operators on the

boundary. Let Σ̂ = Σ ∪ ((−∞, 0] × ∂Σ) be the complete manifold obtained
form Σ by gluing the negative half-cylinder (−∞, 0] × ∂Σ to the boundary
of Σ. The vector bundle E , the complex structure J and the canonical
flat connection d can be extended naturally to Σ̂. Denote by H ∗(Σ̂, EC)
the space of harmonic L2-forms on Σ̂, which is isomorphic to Ĥ∗(Σ, EC).
Moreover, it is the direct sum of the two subspaces Ker(d+)∗ ∩ L2(Σ̂, ∧+)
and Ker(d−)∗ ∩ L2(Σ̂, ∧−), which correspond to the positive and negative
definite subspaces of quadratic form QC respectively. The signature is then
given by

sign(E , Ω) = L2 Index(d−) − L2 Index(d+),

where L2 Index(d±) denote the L2-indices of the operators d±. Let P± de-
note the orthogonal projections of L2(∂Σ, EC) onto the subspace spanned by
all eigenfunctions of A±

J with eigenvalues λ > 0, and A0(Σ, EC; P±) be the
subspace of A0(Σ, EC) consisting of all sections φ which satisfy the bound-
ary conditions P±(φ|∂Σ) = 0. Denote by d±

P : A0(Σ, EC; P±) → A0(Σ, ∧±)
the restriction of d±. The L2-index of d± can be expressed as the sum
of Index(d−

P ) and h∞(∧±), where h∞(∧±) denote the dimension of the
subspace of Ker σ±A±

J (σ±)−1 consisting of limiting values of extended L2-
sections a of ∧± satisfying (d±)∗a = 0. Hence

sign(E , Ω) = Index
(
d−

P

)
− Index

(
d+

P

)
+ h∞(∧−) − h∞(∧+).
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By the Atiyah–Patodi–Singer index theorem [2, Theorem 3.10], d±
P are

Fredholm operators and

Index
(
d±

P

)
=
∫

Σ
α±(z)dµg −

η
(
A±

J
)

+ dim Ker A±
J

2 ,

where
∫

Σ α±(z)dµg are the Atiyah–Singer integral. Hence

sign(E , Ω) =
∫

Σ
α−(z)dµg−

∫
Σ

α+(z)dµg+h∞(∧−)−h∞
(
∧+)+η(AJ).

Following [2] we consider the double Σ ∪∂Σ Σ of Σ, and consider the Z2-
graded vector bundle F = F+ ⊕ F− over the double Σ ∪∂Σ Σ, where
F+ = EC and F− = ∧−. Then the Atiyah–Singer integral can be given by∫

Σ
α−(z)dµg = lim

t→0

∫
Σ

Str
〈

z
∣∣∣e−tD2

∣∣∣ z〉 dµg,

where D is a Dirac operator on F . For any flat symplectic vector bun-
dle (E , Ω) with J ∈ J (E , Ω), we define the peripheral connection to be
a connection which commutes with J, preserves the symplectic form, and
depends only x on a small collar neighborhood of ∂Σ. For each peripheral
connection, there is a natural Dirac operator DF on F , which is associated
with a Clifford connection ∇F . The Duhamel’s formula gives

lim
t→0

∫
Σ

Str
〈

z
∣∣∣e−tD2

∣∣∣ z〉 dµg = lim
t→0

∫
Σ

Str
〈

z
∣∣∣e−t(DF)2 ∣∣∣ z〉 dµg.

By the local index theorem, see e.g. [25, Theorem 8.34], we obtain

lim
t→0

∫
Σ

Str
〈

z
∣∣∣e−t(DF)2 ∣∣∣ z〉 dµg = 2

∫
Σ

c1(E , Ω, J) + dim E

2 χ(Σ).

Similarly, we can calculate the term
∫

Σ α+(z)dµg. Following a similar ar-
gument in [2], we obtain h∞(∧−) = h∞(∧+). Combining with the above
equalities, Theorem 0.1 is proved.

For the trivial symplectic vector bundle (F, Ω) = DIII
n ×(R2n, Ω) over the

bounded symmetric domain DIII
n of type III, there is a canonical complex

structure JF on F . Moreover, we can define a complex connection ∇F on
(F, JF ) such that the first Chern form of the connection is 1

4π ωDIII
n

. For
any representation ρ : π1(Σ) → Sp(E, Ω) and any J ∈ Jo(E , Ω), we get
a ρ-equivariant map J̃ : Σ̃ → DIII

n by using the identification J (E, Ω) ∼=
DIII

n , which is also equivalent to the smooth map J : Σ → Σ̃ ×ρ DIII
n .

For the vector bundle Fρ = Σ̃ ×ρ F over Σ̃ ×ρ DIII
n , the identification

(E, Ω) ∼= (R2n, Ω) induces a complex linear symplectic isomorphism be-
tween (J∗Fρ, J∗JFρ

, J∗Ω) and (E , J, Ω), where J∗Ω denotes the induced
symplectic form on Fρ. The connection ∇F induces a natural connection
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∇Fρ on Fρ, and by pullback, the connection J∗∇Fρ can be proved to be a
peripheral connection. On the other hand, the invariant Kähler form ωDIII

n

is also well-defined on Σ̃ ×ρ DIII
n , which is just the curvature of the con-

nection ∇Fρ up to a factor. The pullback 2-form J̃∗ωDIII
n

is a ρ-equivariant
2-form on Σ̃, so it descends to a 2-form on Σ, which is just J∗ωDIII

n
. Note

that c1(E , Ω, J) is independent of the peripheral connection, thus

2
∫

Σ
c1(E , Ω, J) = 1

2π

∫
Σ

J̃∗ωDIII
n

.

By considering the specific correspondence between the bounded group
cohomology and de Rham cohomolgy, we obtain

T(Σ, ρ) = 1
2π

∫
Σ

J̃∗ωDIII
n

− 1
2π

q∑
i=1

∫
ci

J̃∗αi,

and Theorem 0.2 is proved.
The signature also can be given by

± sign(E , Ω) = − dim E · χ(Σ) − dim H0(∂Σ, E)

+ 2 dim H0(Σ, E) − 2 dimC Ker
(
d∓)∗ ∩ L2

(
Σ̂, ∧∓

)
.

Since dim H0(∂Σ, E) ⩾ q dim H0(Σ, E) and so if q ⩾ 2, we conclude

|sign(E , Ω)| ⩽ dim E|χ(Σ)|.

For a general q ⩾ 1, and for any representation ρ : π1(Σ) → Sp(E, Ω), by
a small perturbation with the representation being fixed on the boundary,
we obtain a smooth family {ρϵ}ϵ > 0 such that the associated signature is
invariant and ρϵ → ρ as ϵ → 0. Moreover dim H0(Σ, Eϵ) = 0 for any ϵ > 0.
Therefore, Theorem 0.3 is proved.

We also consider the case of n = 1, i.e. ρ : π1(Σ) → SL(2,R). In
this case, each element L has the form L = ± exp(2πB) for some B ∈
sl(2,R), we can define a canonical compatible complex structure by J(x) =
exp(−xB)J exp(xB) for each boundary. Then η invariant of AJ and ρ

invariant can be calculated explicitly, see the [18, Appendix]. By revers-
ing the maximal even representations on boundary which are conjugate
to the rotation R(θ), θ ∈ (π, 2π) or are parabolic with eigenvalues only 1,
we obtain a new representation ρ1 with the same Toledo invariant, i.e.
T(Σ, ρ) = T(Σ, ρ1). By using (0.3) and Theorem 0.3 to ρ1, Proposition 0.5
is proved.
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Appendix A.

In this section, we will calculate the curvature of the bounded symmetric
domain of type III.

Denote by

DIII
n :=

{
W ∈ gl(n,C) : W = W ⊤, In − WW > 0

}
the Siegel’s generalized upper half-plane, see [15, Chapter VIII, § 7]. Then

ωDIII
n

:= −2i∂∂̄ log det
(
I − WW

)
= i

2hab̄dwa ∧ dwb

is a Kähler form on DIII
n . The Hermitian metric is denoted by h = hab̄dwa ⊗

dw̄b, and the holomorphic sectional curvature is

K(V ) =
2R
(
V, V , V, V

)
∥V ∥4 = 2Rab̄cd̄V aV bV cV d(

hab̄V aV b
)2

for any V = V a ∂
∂wa and Rab̄cd̄ = −∂c∂d̄hab̄ + Hpq̄∂chaq̄∂d̄hpb̄. Since ωDIII

n
is

invariant under the group Aut(DIII
n ) of holomorphic automorphisms, so we

just need to calculate the holomorphic sectional curvature of the Bergman
metric ωDIII

n
at W = 0. If H is a Hermitian matrix, then

∂∂̄ log det H = Tr
(
H−1∂∂̄H

)
− Tr

(
H−1∂H ∧ H−1∂̄H

)
.

Denote 1
4 habcd = (I − WW )−1

ac δbd + (I − WW )−1
nm(I − WW )−1

bc WamWdn.

Then

ωDIII
n

= i

2
∑

a < b, c < d

(
habcd + hbacd + habdc + hbadc

)
dWab ∧ dWcd

+ i

2
∑

a < b, c

(habcc + hbacc) dWab ∧ dWcc

+ i

2
∑

c < d, a

(
haacd + haadc

)
dWaa ∧ dWcd

+ i

2haaccdWaa ∧ dWcc = i

2
∑

a ⩽ b, c ⩽ d

HabcddWab ∧ dWcd,

where Habcd = (habcd + hbacd + habdc + hbadc)(1 − 1
2 δab)(1 − 1

2 δcd). At the
point W = 0, one has

1
4habcd = δacδbd, ∂habcd = 0,
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and

1
4

∂2habcd

∂Wkl∂Wpq

= (δapδmq + δaqδmp) (δmkδcl + δmlδck) δbd

(
1 − 1

2δpq

)(
1 − 1

2δkl

)
+ (δapδmq + δaqδmp) (δdkδml + δdlδmk) δbc

(
1 − 1

2δpq)(1 − 1
2δkl

)
.

The curvature is

Rabcdklpq = −
∂2Habcd

∂Wkl∂Wpq

= −8
(

(δapδmq + δaqδmp) (δmkδcl + δmlδck) δbd

+ (δapδmq + δaqδmp) (δmkδdl + δmlδdk) δbc

+ (δbpδmq + δbqδmp) (δmkδcl + δmlδck) δad

+ (δbpδmq + δbqδmp) (δmkδdl + δmlδdk) δac

)
·
(

1 − 1
2δab

)(
1 − 1

2δcd

)(
1 − 1

2δpq

)(
1 − 1

2δkl

)
,

where a ⩽ b, c ⩽ d, k ⩽ l, p ⩽ q. Since

H(0) =
∑

a ⩽ b, c ⩽ d

Habcd(0)dWab ⊗ dWcd

= 4
(∑

a < b

2dWab ⊗ dWab +
∑

a

dWaa ⊗ dWaa

)
where Habcd(0) = 8(δacδbd + δbcδad)(1 − 1

2 δab)(1 − 1
2 δcd). So the inverse

matrix is

Hcdab(0) = 1
8(δacδbd + δbcδad).

Then the Ricci curvature is

Rklpq = HcdabRabcdklpq

= 1
8
∑
a < b

Rababklpq + 1
4
∑

a

Raaaaklpq

= −(n + 1)
n∑

a=1
(δapδmq + δaqδmp)

(δmkδal + δmlδak)
(

1 − 1
2δpq

)(
1 − 1

2δkl

)
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= −2(n + 1) (δplδqk + δpkδql)
(

1 − 1
2δpq

)(
1 − 1

2δkl

)
= −n + 1

4 Hklpq.

Thus the first Chern form satisfies
i

2π
RklpqdWkl ∧ dWpq = − i

2π

n + 1
4 HklpqdWkl ∧ dWpq = −n + 1

2
1

2π
ωDIII

n
.

Now we calculate the holomorphic sectional curvature. Note that∑
a ⩽ b, c ⩽ d
k ⩽ l, p ⩽ q

RabcdklpqdWkl ∧ dWpq ⊗ dWab ∧ dWcd

= −
∑

a ⩽ b, c ⩽ d

∂∂̄Habcd ⊗ dWab ∧ dWcd

= −
∑

a,b,c,d

∂∂̄habcd ⊗ dWab ∧ dWcd

=
∑

a,b,c,d,k,l,p,q

R̃abcdklpqdWkl ∧ dWpq ⊗ dWab ∧ dWcd,

where R̃abcdklpq = −4(δbdδckδapδql + δbqδcaδpkδdl). For any (1, 0)-type tan-
gent vector V = (V ab), a ⩽ b, at 0. We also denote by V the matrix
associated with the vector (V ab) by setting V ab = V ba. Then

RabcdklpqV abV cdV klV pq

=

 ∑
a ⩽ b, c ⩽ d
k ⩽ l, p ⩽ q

RabcdklpqdWkl ∧ dWpq ⊗ dWab ∧ dWcd

(V ∧ V ⊗ V ∧ V
)

=

 ∑
a,b,c,d,k,l,p,q

R̃abcdklpqdWkl ∧ dWpq ⊗ dWab ∧ dWcd

(V ∧ V ⊗ V ∧ V
)

= R̃abcdklpqVabVcdVklVpq = −8 Tr
((

VV
)2)

,

and ∥V ∥2 = 4(2
∑

a < b |V ab|2 +
∑

a |V aa|2) = 4 Tr(VV). Thus the holo-
morphic sectional curvature is

K(V ) = −
Tr
((

VV
)2)(

Tr
(
VV

))2 ∈ [−1, −1/n],

and K(V ) = −1/n iff V(det V)−1/n is a unitary group.

VOLUME 37 (2021-2022)



16 INKANG KIM, PIERRE PANSU & XUEYUAN WAN

Acknowledgements

The first author would like to thank Andrea Seppi and Gérard Besson
for their generous hospitality during the visit to l’institut Fourier.

BIBLIOGRAPHY

[1] M. F. Atiyah, “The logarithm of the Dedekind η-function”, Math. Ann. 278 (1987),
no. 1-4, p. 335-380.

[2] M. F. Atiyah, V. K. Patodi & I. M. Singer, “Spectral asymmetry and Riemannian
geometry. I”, Math. Proc. Camb. Philos. Soc. 77 (1975), p. 43-69.

[3] ——— , “Spectral asymmetry and Riemannian geometry. II”, Math. Proc. Camb.
Philos. Soc. 78 (1975), no. 3, p. 405-432.

[4] M. T. Benameur & V. Mathai, “Index type invariants for twisted signature com-
plexes and homotopy invariance”, Math. Proc. Camb. Philos. Soc. 156 (2014), no. 3,
p. 473-503.

[5] M. Burger, A. Iozzi, F. Labourie & A. Wienhard, “Maximal representations
of surface groups: symplectic Anosov structures”, Pure Appl. Math. Q. 1 (2005),
no. 3, p. 543-590.

[6] M. Burger, A. Iozzi & A. Wienhard, “Surface group representations with maxi-
mal Toledo invariant”, Ann. Math. 172 (2010), no. 1, p. 517-566.

[7] J. F. Davis & P. Kirk, Lecture notes in algebraic topology, Graduate Studies in
Mathematics, vol. 35, American Mathematical Society, 2001.

[8] A. Domic & D. Toledo, “The Gromov norm of the Kaehler class of symmetric
domains”, Math. Ann. 276 (1987), no. 3, p. 425-432.

[9] N. M. Dunfield, “Cyclic surgery, degrees of maps of character curves, and volume
rigidity for hyperbolic manifolds”, Invent. Math. 136 (1999), no. 3, p. 623-657.

[10] J. L. Dupont, “Bounds for Characteristic Numbers of Flat Bundles”, in Algebraic
Topology, Aarhus 1978, Lecture Notes in Mathematics, vol. 763, Springer, 1978,
p. 109-119.

[11] S. Francaviglia & B. Klaff, “Maximal volume representations are Fuchsian”,
Geom. Dedicata 117 (2006), p. 111-124.

[12] R. Frigerio, Bounded cohomology of discrete groups, Mathematical Surveys and
Monographs, vol. 227, American Mathematical Society, 2017.

[13] O. García-Prada, P. B. Gothen & I. Mundet i Riera, “Higgs bundles and
surface group representations in the real symplectic group”, J. Topol. 6 (2013),
no. 1, p. 64-118.

[14] W. M. Goldman, “Two papers which changed my life: Milnor’s seminal work on flat
manifolds and bundles”, in Frontiers in complex dynamics. In celebration of John
Milnor’s 80th birthday (A. Bonifant et al., eds.), Princeton Mathematical Series,
Princeton University Press, 2014, p. 679-703.

[15] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, corrected
reprint of the 1978 original ed., Graduate Studies in Mathematics, vol. 34, American
Mathematical Society, 2001.

[16] I. Kim & P. Pansu, “Density of Zariski density for surface groups”, Duke Math. J.
163 (2014), no. 9, p. 1737-1794.

[17] I. Kim, P. Pansu & X. Wan, “Signature, Toledo invariant and surface group rep-
resentations in the real symplectic group”, 2022, https://arxiv.org/abs/2109.
08952.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)

https://arxiv.org/abs/2109.08952
https://arxiv.org/abs/2109.08952


SIGNATURE, TOLEDO AND ETA INVARIANTS FOR SURFACE GROUP 17

[18] ——— , “Signature and Toledo invariants for flat unitary bundles over surfaces with
boundary”, 2024, https://arxiv.org/abs/2202.06436.

[19] S. Kim, “On the equivalence of the definitions of volume of representations”, Pac.
J. Math. 280 (2016), no. 1, p. 51-68.

[20] S. Kim & I. Kim, “Volume invariant and maximal representations of discrete sub-
groups of Lie groups”, Math. Z. 276 (2014), no. 3-4, p. 1189-1213.

[21] K. Kodaira, Complex manifolds and deformation of complex structures, translated
from the 1981 japanese original by kazuo akao. reprint of the 1986 english ed.,
Classics in Mathematics, Springer, 2005.

[22] V. Koziarz & J. Maubon, “Harmonic maps and representations of non-uniform
lattices of P U(m, 1)”, Ann. Inst. Fourier 58 (2008), no. 2, p. 507-558.

[23] ——— , “Maximal representations of uniform complex hyperbolic lattices”, Ann.
Math. 185 (2017), no. 2, p. 493-540.

[24] G. Lusztig, “Novikov’s higher signature and families of elliptic operators”, J. Differ.
Geom. 7 (1972), p. 229-256.

[25] R. B. Melrose, The Atiyah–Patodi–Singer index theorem, Research Notes in Math-
ematics, vol. 4, A. K. Peters, 1993.

[26] W. Meyer, Die Signatur von lokalen Koeffizientensystemen und Faserndeln, Bonner
Mathematische Schriften, vol. 53, Mathematisches Institut der Universität Bonn,
Bonn, 1972.

[27] J. W. Milnor, “On the existence of a connection with curvature zero”, Comment.
Math. Helv. 21 (1958), p. 215-223.

[28] W. Müller, “The eta invariant (some recent developments)”, in Séminaire Bour-
baki. Volume 1993/94. Exposés 775-789, Astérisque, vol. 227, Société Mathématique
de France, 1995, p. 335-364.

[29] D. Toledo, “Representations of surface groups in complex hyperbolic space”, J. Dif-
fer. Geom. 29 (1989), no. 1, p. 125-133.

[30] V. G. Turaev, “A cocycle of the symplectic first Chern class and the Maslov index”,
Funct. Anal. Appl. 18 (1984), p. 35-39.

[31] J. W. Wood, “Bundles with totally disconnected structure group”, Comment.
Math. Helv. 46 (1971), p. 257-273.

Inkang Kim
School of Mathematics,
KIAS, Heogiro 85,
Dongdaemun-gu Seoul,
02455 (Republic of Korea)
inkang@kias.re.kr
Pierre Pansu
Universit Paris-Saclay, CNRS,
Laboratoire de Mathématiques d’Orsay
91405 Orsay Cédex (France)
pierre.pansu@universite-paris-saclay.fr
Xueyuan Wan
Mathematical Science Research Center
Chongqing University of Technology,
Chongqing 400054 (China)
xwan@cqut.edu.cn

VOLUME 37 (2021-2022)

https://arxiv.org/abs/2202.06436
mailto:inkang@kias.re.kr
mailto:pierre.pansu@universite-paris-saclay.fr
mailto:xwan@cqut.edu.cn

	Introduction
	1. Some backgrounds
	1.1. Symplectic vector bundle and eta invariant over a circle
	1.1.1. Symplectic vector bundle
	1.1.2. First order differential operator
	1.1.3. eta invariant

	1.2. Signature of flat symplectic vector bundles
	1.2.1. Definition of signature


	2. Sketch of proofs
	Appendix A. 
	Acknowledgements

	References

