The aim of this survey is to present some aspects of the Bérard–Besson–Gallot spectral embeddings of a closed Riemannian manifold from their origins in Riemannian geometry to more recent applications in data analysis.
@article{TSG_2017-2019__35__197_0, author = {David Tewodrose}, title = {A survey on spectral embeddings and their application in data analysis}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {197--244}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {35}, year = {2017-2019}, doi = {10.5802/tsg.369}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.369/} }
TY - JOUR AU - David Tewodrose TI - A survey on spectral embeddings and their application in data analysis JO - Séminaire de théorie spectrale et géométrie PY - 2017-2019 SP - 197 EP - 244 VL - 35 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.369/ DO - 10.5802/tsg.369 LA - en ID - TSG_2017-2019__35__197_0 ER -
%0 Journal Article %A David Tewodrose %T A survey on spectral embeddings and their application in data analysis %J Séminaire de théorie spectrale et géométrie %D 2017-2019 %P 197-244 %V 35 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.369/ %R 10.5802/tsg.369 %G en %F TSG_2017-2019__35__197_0
David Tewodrose. A survey on spectral embeddings and their application in data analysis. Séminaire de théorie spectrale et géométrie, Volume 35 (2017-2019), pp. 197-244. doi : 10.5802/tsg.369. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.369/
[1] Hiba Abdallah Embedding Riemannian manifolds via their eigenfunctions and their heat kernel, Bull. Korean Math. Soc., Volume 49 (2012) no. 5, pp. 939-947 | DOI | MR | Zbl
[2] Luigi Ambrosio Calculus, heat flow and curvature-dimension bounds in metric measure spaces, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures (2018), pp. 301-340 | MR | Zbl
[3] Luigi Ambrosio; Elia Brué; Daniele Semola Lectures on Optimal Transport (In preparation)
[4] Luigi Ambrosio; Nicola Gigli; Giuseppe Savaré Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., Volume 163 (2014) no. 7, pp. 1405-1490 | DOI | MR | Zbl
[5] Luigi Ambrosio; Shouhei Honda; Jacobus W. Portegies; David Tewodrose Embedding of RCD(K,N) spaces in via eigenfunctions (2018) (https://arxiv.org/abs/1812.03712) | Zbl
[6] Luigi Ambrosio; Shouhei Honda; David Tewodrose Short-time behavior of the heat kernel and Weyl’s law on spaces, Ann. Global Anal. Geom., Volume 53 (2018) no. 1, pp. 97-119 | DOI | MR | Zbl
[7] Michael T. Anderson; Jeff Cheeger -compactness for manifolds with Ricci curvature and injectivity radius bounded below, J. Differ. Geom., Volume 35 (1992) no. 2, pp. 265-281 | MR | Zbl
[8] Jonathan Bates The embedding dimension of Laplacian eigenfunction maps, Appl. Comput. Harmon. Anal., Volume 37 (2014) no. 3, pp. 516-530 | DOI | MR | Zbl
[9] Mikhail Belkin; Partha Niyogi Laplacian eigenmaps for dimensionality reduction and data representation, Neural comput., Volume 15 (2003) no. 6, pp. 1373-1396 | DOI | Zbl
[10] Mikhail Belkin; Partha Niyogi Convergence of Laplacian eigenmaps, Advances in Neural Information Processing Systems (2007), pp. 129-136
[11] Pierre H. Bérard Spectral geometry: direct and inverse problems, Monografías de Matemática [Mathematical Monographs], 41, Instituto de Matemática Pura e Aplicada (IMPA), 1986 (With appendices by Gérard Besson, Pierre Bérard and Marcel Berger) | DOI | MR | Zbl
[12] Pierre H. Bérard; Gérard Besson Théorèmes de finitude en géométrie riemannienne et structures métriques, Séminaire de Théorie Spectrale et Géométrie, Année 1983–1984, University of Grenoble, Saint-Martin D’Hères, 1984, VIII | DOI | Numdam | MR | Zbl
[13] Pierre H. Bérard; Gérard Besson; Sylvestre Gallot Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal., Volume 4 (1994) no. 4, pp. 373-398 | DOI | MR | Zbl
[14] Marcel Berger; Paul Gauduchon; Edmond Mazet Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, 194, Springer, 1971 | MR | Zbl
[15] Nicole Berline; Ezra Getzler; Michèle Vergne Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, Springer, 2004 (Corrected reprint of the 1992 original) | MR | Zbl
[16] Jérôme Bertrand; Christian Ketterer; Ilaria Mondello; Thomas Richard Stratified spaces and synthetic Ricci curvature bounds (2018) (https://arxiv.org/abs/1804.08870, to appear in Annales de l’Institut Fourier)
[17] Haïm Brézis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies; Notas de Matemática, 5;50, North-Holland; Elsevier, 1973 | MR | Zbl
[18] Elia Brué; Daniele Semola Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian flows, Commun. Pure Appl. Math., Volume 73 (2019) no. 6, pp. 1141-1204 | DOI | MR | Zbl
[19] Yuriĭ Burago; Mikhail Gromov; Grigori Perel’man A. D. Aleksandrov spaces with curvatures bounded below, Usp. Mat. Nauk, Volume 47 (1992) no. 2(284), p. 3-51, 222 | DOI | MR | Zbl
[20] Jeff Cheeger; Tobias H. Colding On the structure of spaces with Ricci curvature bounded below. I, J. Differ. Geom., Volume 46 (1997) no. 3, pp. 406-480 | MR | Zbl
[21] Jeff Cheeger; Tobias H. Colding On the structure of spaces with Ricci curvature bounded below. II, J. Differ. Geom., Volume 54 (2000) no. 1, pp. 13-35 | MR | Zbl
[22] Jeff Cheeger; Tobias H. Colding On the structure of spaces with Ricci curvature bounded below. III, J. Differ. Geom., Volume 54 (2000) no. 1, pp. 37-74 | MR | Zbl
[23] Ronald R. Coifman; Stéphane Lafon Diffusion maps, Appl. Comput. Harmon. Anal., Volume 21 (2006) no. 1, pp. 5-30 | DOI | MR | Zbl
[24] Bruno Colbois; Daniel Maerten Eigenvalue estimate for the rough Laplacian on differential forms, Manuscr. Math., Volume 132 (2010) no. 3-4, pp. 399-413 | DOI | MR | Zbl
[25] Tobias H. Colding; Aaron Naber Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. Math., Volume 176 (2012) no. 2, pp. 1173-1229 | DOI | MR | Zbl
[26] Camillo De Lellis The masterpieces of John Forbes Nash Jr., The Abel Prize 2013-2017, Springer, 2019, pp. 391-499 | DOI
[27] Guido De Philippis; Andrea Marchese; Filip Rindler On a conjecture of Cheeger, Measure theory in non-smooth spaces (Partial Differential Equations and Measure Theory), Walter de Gruyter, 2017, pp. 145-155 | MR
[28] Kenji Fukaya Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math., Volume 87 (1987) no. 3, pp. 517-547 | DOI | MR | Zbl
[29] Nicola Gigli Nonsmooth differential geometry–an approach tailored for spaces with Ricci curvature bounded from below, Memoirs of the American Mathematical Society, 1196, American Mathematical Society, 2018 | DOI | MR | Zbl
[30] Nicola Gigli; Enrico Pasqualetto Behaviour of the reference measure on RCD spaces under charts (2016) (https://arxiv.org/abs/1607.05188v2)
[31] Alexander Grigor’yan Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society; International Press, 2009 | MR | Zbl
[32] Misha Gromov Metric structures for Riemannian and non-Riemannian spaces, Springer, 2007 (Translated from the French by Sean Michael Bates. With appendices by M. Katz, P. Pansu, and S. Semmes. Edited by J. LaFontaine and P. Pansu) | MR | Zbl
[33] Shouhei Honda Elliptic PDEs on compact Ricci limit spaces and applications, 1211, American Mathematical Society, 2018 | DOI | MR | Zbl
[34] Renjin Jiang; Huaiqian Li; Huichun Zhang Heat kernel bounds on metric measure spaces and some applications, Potential Anal., Volume 44 (2016) no. 3, pp. 601-627 | DOI | MR | Zbl
[35] Peter W. Jones; Mauro Maggioni; Raanan Schul Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels, Proc. Natl. Acad. Sci. USA, Volume 105 (2008) no. 6, pp. 1803-1808 | DOI | MR | Zbl
[36] Atsushi Kasue; Hironori Kumura Spectral convergence of Riemannian manifolds, Tôhoku Math. J., Volume 46 (1994) no. 2, pp. 147-179 | DOI | MR | Zbl
[37] Martin Kell; Andrea Mondino On the volume measure of non-smooth spaces with Ricci curvature bounded below, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (2018) no. 2, pp. 593-610 | MR | Zbl
[38] Christian Ketterer Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl., Volume 103 (2015) no. 5, pp. 1228-1275 | DOI | MR | Zbl
[39] Wilhelm P. A. Klingenberg Riemannian geometry, De Gruyter Studies in Mathematics, 1, Walter de Gruyter, 1995 | DOI | MR | Zbl
[40] Yukio Komura Nonlinear semigroups in Hilbert spaces, Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969) (1970), pp. 260-268 | MR | Zbl
[41] Chen-Yun Lin; Hau-Tieng Wu Embeddings of Riemannian manifolds with finite eigenvector fields of connection Laplacian, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 5, 126 | DOI | MR | Zbl
[42] John Lott; Cédric Villani Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991 | DOI | MR | Zbl
[43] Danka Lučić; Enrico Pasqualetto Infinitesimal Hilbertianity of weighted Riemannian manifolds, Can. Math. Bull., Volume 63 (2020) no. 1, pp. 118-140 | DOI | MR | Zbl
[44] Ulrike von Luxburg; Mikhail Belkin; Olivier Bousquet Consistency of spectral clustering, Ann. Stat., Volume 36 (2008) no. 2, pp. 555-586 | DOI | MR | Zbl
[45] Subbaramiah Minakshisundaram; Åke Pleijel Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Can. J. Math., Volume 1 (1949), pp. 242-256 | DOI | MR | Zbl
[46] Andrea Mondino; Aaron Naber Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc., Volume 21 (2019) no. 6, pp. 1809-1854 | DOI | MR | Zbl
[47] John Nash The imbedding problem for Riemannian manifolds, Ann. Math., Volume 63 (1956), pp. 20-63 | DOI | MR | Zbl
[48] Anton Petrunin Alexandrov meets Lott–Villani–Sturm, Münster J. Math., Volume 4 (2011) no. 1, pp. 53-64 | MR | Zbl
[49] Jacobus W. Portegies Embeddings of Riemannian manifolds with heat kernels and eigenfunctions, Commun. Pure Appl. Math., Volume 69 (2016) no. 3, pp. 478-518 | DOI | MR | Zbl
[50] Sam T. Roweis; Lawrence K. Saul Nonlinear dimensionality reduction by locally linear embedding, Science, Volume 290 (2000) no. 5500, pp. 2323-2326 | DOI
[51] A. Singer; Hau-Tieng Wu Vector diffusion maps and the connection Laplacian, Commun. Pure Appl. Math., Volume 65 (2012) no. 8, pp. 1067-1144 | DOI | MR | Zbl
[52] Karl-Theodor Sturm Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and -Liouville properties, J. Reine Angew. Math., Volume 456 (1994), pp. 173-196 | DOI | MR | Zbl
[53] Karl-Theodor Sturm Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., Volume 32 (1995) no. 2, pp. 275-312 | MR | Zbl
[54] Karl-Theodor Sturm Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl., Volume 75 (1996) no. 3, pp. 273-297 | MR | Zbl
[55] Karl-Theodor Sturm On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | DOI | MR | Zbl
[56] Karl-Theodor Sturm On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177 | DOI | MR | Zbl
[57] Joshua B. Tenenbaum; Vin De Silva; John C. Langford A global geometric framework for nonlinear dimensionality reduction, Science, Volume 290 (2000) no. 5500, pp. 2319-2323 | DOI
[58] David Tewodrose Some functional inequalities and spectral properties of metric measure spaces with curvature bounded below, Ph. D. Thesis, ENS, France; Scuola Normale Superiore di Pisa, Italy (2018)
[59] Peter Topping Lectures on the Ricci flow, London Mathematical Society Lecture Note Series, 325, Cambridge University Press, 2006 | DOI | MR | Zbl
[60] Nicolás García Trillos; Moritz Gerlach; Matthias Hein; Dejan Slepčev Error Estimates for Spectral Convergence of the Graph Laplacian on Random Geometric Graphs Toward the Laplace–Beltrami Operator, Found. Comput. Math. (2019), pp. 1-61 | Zbl
[61] Xiaowei Wang; Ke Zhu Isometric embeddings via heat kernel, J. Differ. Geom., Volume 99 (2015) no. 3, pp. 497-538 | MR | Zbl
[62] Hau-Tieng Wu Embedding Riemannian manifolds by the heat kernel of the connection Laplacian, Adv. Math., Volume 304 (2017), pp. 1055-1079 | DOI | MR | Zbl
[63] Forrest W. Young Multidimensional Scaling: History, theory, and applications, Lawrence Erlbaum Associates, Inc., 1987
Cited by Sources: