Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Séminaire de théorie spectrale et géométrie
  • Tome 35 (2017-2019)
  • p. 197-244
  • Suivant
A survey on spectral embeddings and their application in data analysis
David Tewodrose1
1 CY Cergy Paris University, Laboratoire de mathématiques AGM, UMR CNRS 8088, 2 av. Adolphe Chauvin, 95302 Cergy-Pontoise cedex (France)
Séminaire de théorie spectrale et géométrie, Tome 35 (2017-2019), pp. 197-244.
  • Résumé

The aim of this survey is to present some aspects of the Bérard–Besson–Gallot spectral embeddings of a closed Riemannian manifold from their origins in Riemannian geometry to more recent applications in data analysis.

  • Détail
  • Export
  • Comment citer
Publié le : 2021-04-21
DOI : 10.5802/tsg.369
Affiliations des auteurs :
David Tewodrose 1

1 CY Cergy Paris University, Laboratoire de mathématiques AGM, UMR CNRS 8088, 2 av. Adolphe Chauvin, 95302 Cergy-Pontoise cedex (France)
  • BibTeX
  • RIS
  • EndNote
@article{TSG_2017-2019__35__197_0,
     author = {David Tewodrose},
     title = {A survey on spectral embeddings and their application in data analysis},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {197--244},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {35},
     year = {2017-2019},
     doi = {10.5802/tsg.369},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.369/}
}
TY  - JOUR
AU  - David Tewodrose
TI  - A survey on spectral embeddings and their application in data analysis
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2017-2019
SP  - 197
EP  - 244
VL  - 35
PB  - Institut Fourier
PP  - Grenoble
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.369/
DO  - 10.5802/tsg.369
LA  - en
ID  - TSG_2017-2019__35__197_0
ER  - 
%0 Journal Article
%A David Tewodrose
%T A survey on spectral embeddings and their application in data analysis
%J Séminaire de théorie spectrale et géométrie
%D 2017-2019
%P 197-244
%V 35
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.369/
%R 10.5802/tsg.369
%G en
%F TSG_2017-2019__35__197_0
David Tewodrose. A survey on spectral embeddings and their application in data analysis. Séminaire de théorie spectrale et géométrie, Tome 35 (2017-2019), pp. 197-244. doi : 10.5802/tsg.369. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.369/
  • Bibliographie
  • Cité par

[1] Hiba Abdallah Embedding Riemannian manifolds via their eigenfunctions and their heat kernel, Bull. Korean Math. Soc., Volume 49 (2012) no. 5, pp. 939-947 | DOI | MR | Zbl

[2] Luigi Ambrosio Calculus, heat flow and curvature-dimension bounds in metric measure spaces, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures (2018), pp. 301-340 | MR | Zbl

[3] Luigi Ambrosio; Elia Brué; Daniele Semola Lectures on Optimal Transport (In preparation)

[4] Luigi Ambrosio; Nicola Gigli; Giuseppe Savaré Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., Volume 163 (2014) no. 7, pp. 1405-1490 | DOI | MR | Zbl

[5] Luigi Ambrosio; Shouhei Honda; Jacobus W. Portegies; David Tewodrose Embedding of RCD(K,N) spaces in L 2 via eigenfunctions (2018) (https://arxiv.org/abs/1812.03712) | Zbl

[6] Luigi Ambrosio; Shouhei Honda; David Tewodrose Short-time behavior of the heat kernel and Weyl’s law on RCD * (K,N) spaces, Ann. Global Anal. Geom., Volume 53 (2018) no. 1, pp. 97-119 | DOI | MR | Zbl

[7] Michael T. Anderson; Jeff Cheeger C α -compactness for manifolds with Ricci curvature and injectivity radius bounded below, J. Differ. Geom., Volume 35 (1992) no. 2, pp. 265-281 | MR | Zbl

[8] Jonathan Bates The embedding dimension of Laplacian eigenfunction maps, Appl. Comput. Harmon. Anal., Volume 37 (2014) no. 3, pp. 516-530 | DOI | MR | Zbl

[9] Mikhail Belkin; Partha Niyogi Laplacian eigenmaps for dimensionality reduction and data representation, Neural comput., Volume 15 (2003) no. 6, pp. 1373-1396 | DOI | Zbl

[10] Mikhail Belkin; Partha Niyogi Convergence of Laplacian eigenmaps, Advances in Neural Information Processing Systems (2007), pp. 129-136

[11] Pierre H. Bérard Spectral geometry: direct and inverse problems, Monografías de Matemática [Mathematical Monographs], 41, Instituto de Matemática Pura e Aplicada (IMPA), 1986 (With appendices by Gérard Besson, Pierre Bérard and Marcel Berger) | DOI | MR | Zbl

[12] Pierre H. Bérard; Gérard Besson Théorèmes de finitude en géométrie riemannienne et structures métriques, Séminaire de Théorie Spectrale et Géométrie, Année 1983–1984, University of Grenoble, Saint-Martin D’Hères, 1984, VIII | DOI | Numdam | MR | Zbl

[13] Pierre H. Bérard; Gérard Besson; Sylvestre Gallot Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal., Volume 4 (1994) no. 4, pp. 373-398 | DOI | MR | Zbl

[14] Marcel Berger; Paul Gauduchon; Edmond Mazet Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, 194, Springer, 1971 | MR | Zbl

[15] Nicole Berline; Ezra Getzler; Michèle Vergne Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, Springer, 2004 (Corrected reprint of the 1992 original) | MR | Zbl

[16] Jérôme Bertrand; Christian Ketterer; Ilaria Mondello; Thomas Richard Stratified spaces and synthetic Ricci curvature bounds (2018) (https://arxiv.org/abs/1804.08870, to appear in Annales de l’Institut Fourier)

[17] Haïm Brézis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies; Notas de Matemática, 5;50, North-Holland; Elsevier, 1973 | MR | Zbl

[18] Elia Brué; Daniele Semola Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian flows, Commun. Pure Appl. Math., Volume 73 (2019) no. 6, pp. 1141-1204 | DOI | MR | Zbl

[19] Yuriĭ Burago; Mikhail Gromov; Grigori Perel’man A. D. Aleksandrov spaces with curvatures bounded below, Usp. Mat. Nauk, Volume 47 (1992) no. 2(284), p. 3-51, 222 | DOI | MR | Zbl

[20] Jeff Cheeger; Tobias H. Colding On the structure of spaces with Ricci curvature bounded below. I, J. Differ. Geom., Volume 46 (1997) no. 3, pp. 406-480 | MR | Zbl

[21] Jeff Cheeger; Tobias H. Colding On the structure of spaces with Ricci curvature bounded below. II, J. Differ. Geom., Volume 54 (2000) no. 1, pp. 13-35 | MR | Zbl

[22] Jeff Cheeger; Tobias H. Colding On the structure of spaces with Ricci curvature bounded below. III, J. Differ. Geom., Volume 54 (2000) no. 1, pp. 37-74 | MR | Zbl

[23] Ronald R. Coifman; Stéphane Lafon Diffusion maps, Appl. Comput. Harmon. Anal., Volume 21 (2006) no. 1, pp. 5-30 | DOI | MR | Zbl

[24] Bruno Colbois; Daniel Maerten Eigenvalue estimate for the rough Laplacian on differential forms, Manuscr. Math., Volume 132 (2010) no. 3-4, pp. 399-413 | DOI | MR | Zbl

[25] Tobias H. Colding; Aaron Naber Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. Math., Volume 176 (2012) no. 2, pp. 1173-1229 | DOI | MR | Zbl

[26] Camillo De Lellis The masterpieces of John Forbes Nash Jr., The Abel Prize 2013-2017, Springer, 2019, pp. 391-499 | DOI

[27] Guido De Philippis; Andrea Marchese; Filip Rindler On a conjecture of Cheeger, Measure theory in non-smooth spaces (Partial Differential Equations and Measure Theory), Walter de Gruyter, 2017, pp. 145-155 | MR

[28] Kenji Fukaya Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math., Volume 87 (1987) no. 3, pp. 517-547 | DOI | MR | Zbl

[29] Nicola Gigli Nonsmooth differential geometry–an approach tailored for spaces with Ricci curvature bounded from below, Memoirs of the American Mathematical Society, 1196, American Mathematical Society, 2018 | DOI | MR | Zbl

[30] Nicola Gigli; Enrico Pasqualetto Behaviour of the reference measure on RCD spaces under charts (2016) (https://arxiv.org/abs/1607.05188v2)

[31] Alexander Grigor’yan Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society; International Press, 2009 | MR | Zbl

[32] Misha Gromov Metric structures for Riemannian and non-Riemannian spaces, Springer, 2007 (Translated from the French by Sean Michael Bates. With appendices by M. Katz, P. Pansu, and S. Semmes. Edited by J. LaFontaine and P. Pansu) | MR | Zbl

[33] Shouhei Honda Elliptic PDEs on compact Ricci limit spaces and applications, 1211, American Mathematical Society, 2018 | DOI | MR | Zbl

[34] Renjin Jiang; Huaiqian Li; Huichun Zhang Heat kernel bounds on metric measure spaces and some applications, Potential Anal., Volume 44 (2016) no. 3, pp. 601-627 | DOI | MR | Zbl

[35] Peter W. Jones; Mauro Maggioni; Raanan Schul Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels, Proc. Natl. Acad. Sci. USA, Volume 105 (2008) no. 6, pp. 1803-1808 | DOI | MR | Zbl

[36] Atsushi Kasue; Hironori Kumura Spectral convergence of Riemannian manifolds, Tôhoku Math. J., Volume 46 (1994) no. 2, pp. 147-179 | DOI | MR | Zbl

[37] Martin Kell; Andrea Mondino On the volume measure of non-smooth spaces with Ricci curvature bounded below, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (2018) no. 2, pp. 593-610 | MR | Zbl

[38] Christian Ketterer Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl., Volume 103 (2015) no. 5, pp. 1228-1275 | DOI | MR | Zbl

[39] Wilhelm P. A. Klingenberg Riemannian geometry, De Gruyter Studies in Mathematics, 1, Walter de Gruyter, 1995 | DOI | MR | Zbl

[40] Yukio Komura Nonlinear semigroups in Hilbert spaces, Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969) (1970), pp. 260-268 | MR | Zbl

[41] Chen-Yun Lin; Hau-Tieng Wu Embeddings of Riemannian manifolds with finite eigenvector fields of connection Laplacian, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 5, 126 | DOI | MR | Zbl

[42] John Lott; Cédric Villani Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991 | DOI | MR | Zbl

[43] Danka Lučić; Enrico Pasqualetto Infinitesimal Hilbertianity of weighted Riemannian manifolds, Can. Math. Bull., Volume 63 (2020) no. 1, pp. 118-140 | DOI | MR | Zbl

[44] Ulrike von Luxburg; Mikhail Belkin; Olivier Bousquet Consistency of spectral clustering, Ann. Stat., Volume 36 (2008) no. 2, pp. 555-586 | DOI | MR | Zbl

[45] Subbaramiah Minakshisundaram; Åke Pleijel Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Can. J. Math., Volume 1 (1949), pp. 242-256 | DOI | MR | Zbl

[46] Andrea Mondino; Aaron Naber Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc., Volume 21 (2019) no. 6, pp. 1809-1854 | DOI | MR | Zbl

[47] John Nash The imbedding problem for Riemannian manifolds, Ann. Math., Volume 63 (1956), pp. 20-63 | DOI | MR | Zbl

[48] Anton Petrunin Alexandrov meets Lott–Villani–Sturm, Münster J. Math., Volume 4 (2011) no. 1, pp. 53-64 | MR | Zbl

[49] Jacobus W. Portegies Embeddings of Riemannian manifolds with heat kernels and eigenfunctions, Commun. Pure Appl. Math., Volume 69 (2016) no. 3, pp. 478-518 | DOI | MR | Zbl

[50] Sam T. Roweis; Lawrence K. Saul Nonlinear dimensionality reduction by locally linear embedding, Science, Volume 290 (2000) no. 5500, pp. 2323-2326 | DOI

[51] A. Singer; Hau-Tieng Wu Vector diffusion maps and the connection Laplacian, Commun. Pure Appl. Math., Volume 65 (2012) no. 8, pp. 1067-1144 | DOI | MR | Zbl

[52] Karl-Theodor Sturm Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and L p -Liouville properties, J. Reine Angew. Math., Volume 456 (1994), pp. 173-196 | DOI | MR | Zbl

[53] Karl-Theodor Sturm Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., Volume 32 (1995) no. 2, pp. 275-312 | MR | Zbl

[54] Karl-Theodor Sturm Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl., Volume 75 (1996) no. 3, pp. 273-297 | MR | Zbl

[55] Karl-Theodor Sturm On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | DOI | MR | Zbl

[56] Karl-Theodor Sturm On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177 | DOI | MR | Zbl

[57] Joshua B. Tenenbaum; Vin De Silva; John C. Langford A global geometric framework for nonlinear dimensionality reduction, Science, Volume 290 (2000) no. 5500, pp. 2319-2323 | DOI

[58] David Tewodrose Some functional inequalities and spectral properties of metric measure spaces with curvature bounded below, Ph. D. Thesis, ENS, France; Scuola Normale Superiore di Pisa, Italy (2018)

[59] Peter Topping Lectures on the Ricci flow, London Mathematical Society Lecture Note Series, 325, Cambridge University Press, 2006 | DOI | MR | Zbl

[60] Nicolás García Trillos; Moritz Gerlach; Matthias Hein; Dejan Slepčev Error Estimates for Spectral Convergence of the Graph Laplacian on Random Geometric Graphs Toward the Laplace–Beltrami Operator, Found. Comput. Math. (2019), pp. 1-61 | Zbl

[61] Xiaowei Wang; Ke Zhu Isometric embeddings via heat kernel, J. Differ. Geom., Volume 99 (2015) no. 3, pp. 497-538 | MR | Zbl

[62] Hau-Tieng Wu Embedding Riemannian manifolds by the heat kernel of the connection Laplacian, Adv. Math., Volume 304 (2017), pp. 1055-1079 | DOI | MR | Zbl

[63] Forrest W. Young Multidimensional Scaling: History, theory, and applications, Lawrence Erlbaum Associates, Inc., 1987

Cité par Sources :

Diffusé par : Publié par : Développé par :
  • Nous suivre