We present several recent results dealing with the metric properties of domains in the complex Euclidean space . We provide with examples of domains, endowed with Finsler or Kähler metrics, that are (or are not) Gromov hyperbolic. We also present how different notions, such as the Gromov hyperbolicity, the holomorphic bisectional curvature or the d’Angelo type may be related for smooth bounded domains in . We also present several open questions in the core of the paper.
@article{TSG_2017-2019__35__23_0, author = {Herv\'e Gaussier}, title = {On the {Gromov} hyperbolicity of domains in $\protect \mathbb{C}^n$}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {23--42}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {35}, year = {2017-2019}, doi = {10.5802/tsg.362}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.362/} }
TY - JOUR AU - Hervé Gaussier TI - On the Gromov hyperbolicity of domains in $\protect \mathbb{C}^n$ JO - Séminaire de théorie spectrale et géométrie PY - 2017-2019 SP - 23 EP - 42 VL - 35 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.362/ DO - 10.5802/tsg.362 LA - en ID - TSG_2017-2019__35__23_0 ER -
%0 Journal Article %A Hervé Gaussier %T On the Gromov hyperbolicity of domains in $\protect \mathbb{C}^n$ %J Séminaire de théorie spectrale et géométrie %D 2017-2019 %P 23-42 %V 35 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.362/ %R 10.5802/tsg.362 %G en %F TSG_2017-2019__35__23_0
Hervé Gaussier. On the Gromov hyperbolicity of domains in $\protect \mathbb{C}^n$. Séminaire de théorie spectrale et géométrie, Volume 35 (2017-2019), pp. 23-42. doi : 10.5802/tsg.362. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.362/
[1] Zoltán M. Balogh; Mario Bonk Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Comment. Math. Helv., Volume 75 (2000) no. 3, pp. 504-533 | DOI | MR | Zbl
[2] Alan F. Beardon; Charles Pommerenke The Poincaré metric of plane domains, J. Lond. Math. Soc., Volume 18 (1978), pp. 475-483 | DOI | Zbl
[3] Stefan Bergmann Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande. I, J. Reine Angew. Math., Volume 169 (1932), pp. 1-42 | Zbl
[4] John S. Bland The Einstein–Kähler metric on , Mich. Math. J., Volume 33 (1986), pp. 209-220 | MR | Zbl
[5] Mario Bonk Quasi-geodesic segments and Gromov hyperbolic spaces, Geom. Dedicata, Volume 62 (1996) no. 3, pp. 281-298 | MR | Zbl
[6] Filippo Bracci; Hervé Gaussier; Andrew Zimmer The geometry of domains with negatively pinched Kähler metrics (2018) (https://arxiv.org/abs/1810.11389)
[7] Filippo Bracci; Hervé Gaussier; Andrew Zimmer Homeomorphic extension of quasi-isometries for convex domains in and iteration theory (2018) (https://arxiv.org/abs/1808.07415) | Zbl
[8] Stephen M. Buckley; David A. Herron Quasihyperbolic geodesics are hyperbolic quasi-geodesics, J. Eur. Math. Soc., Volume 22 (2020) no. 6, pp. 1917-1970 | MR | Zbl
[9] Luca Capogna; Enrico Le Donne Conformal equivalence of visual metrics in pseudoconvex domains (2017) (https://arxiv.org/abs/1703.00238) | Zbl
[10] Shiu-Yuen Cheng; Shing-Tung Yau On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation, Commun. Pure Appl. Math., Volume 33 (1980), pp. 507-544 | DOI | Zbl
[11] Shiing-Shen Chern; Jürgen K. Moser Real hypersurfaces in complex manifolds, Acta Math., Volume 133 (1975), pp. 219-271 | DOI | MR | Zbl
[12] John P. D’Angelo Finite type conditions for real hypersurfaces, J. Differ. Geom., Volume 14 (1979), pp. 59-66 | MR | Zbl
[13] Charles Fefferman The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., Volume 26 (1974), pp. 1-65 | DOI | MR | Zbl
[14] John Erik Fornæss; Feng Rong Estimate of the squeezing function for a class of bounded domains, Math. Ann., Volume 371 (2018) no. 3-4, pp. 1087-1094 | DOI | MR | Zbl
[15] John Erik Fornæss; Erlend Fornæss Wold A non-strictly pseudoconvex domain for which the squeezing function tends to 1 towards the boundary, Pac. J. Math., Volume 297 (2018) no. 1, pp. 79-86 | DOI | MR | Zbl
[16] Sébastien Gontard Asymptotic behavior of the complete Kahler–Einstein metric in tube domains (2018) (https://arxiv.org/abs/1807.02002)
[17] Sébastien Gontard On the Kähler–Einstein metric at strictly pseudoconvex points, Complex Var. Elliptic Equ., Volume 64 (2019) no. 10, pp. 1773-1795 | DOI | Zbl
[18] Fathi Haggui; Abdelwahed Chrih Sur la non Gromov hyperbolicité de certains domaines de ., C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 5, pp. 493-498 | DOI | Zbl
[19] Kyong T. Hahn Inequality between the Bergman metric and Caratheodory differential metric, Proc. Am. Math. Soc., Volume 68 (1978), pp. 193-194 | MR | Zbl
[20] Peter Hästö; Ana Portilla; José M. Rodríguez; Eva Tourís Gromov hyperbolic equivalence of the hyperbolic and quasihyperbolic metrics in Denjoy domains, Bull. Lond. Math. Soc., Volume 42 (2010) no. 2, pp. 282-294 | DOI | MR | Zbl
[21] Kang-Tae Kim; Liyou Zhang On the uniform squeezing property of bounded convex domains in , Pac. J. Math., Volume 282 (2016) no. 2, pp. 341-358 | MR | Zbl
[22] Shoshichi Kobayashi Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften, 318, Springer, 1998 | MR | Zbl
[23] Harish Seshadri; Fangyang Zheng Complex product manifolds cannot be negatively curved, Asian J. Math., Volume 12 (2008) no. 1, pp. 145-149 | DOI | MR | Zbl
[24] Paul C. Yang On Kähler manifolds with negative holomorphic bisectional curvature, Duke Math. J., Volume 43 (1976), pp. 871-874 | Zbl
[25] Sai-Kee Yeung Geometry of domains with the uniform squeezing property, Adv. Math., Volume 221 (2009) no. 2, pp. 547-569 | DOI | MR | Zbl
[26] Andrew M. Zimmer Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type, Math. Ann., Volume 365 (2016) no. 3-4, pp. 1425-1498 | DOI | MR | Zbl
[27] Andrew M. Zimmer Gromov hyperbolicity of bounded convex domains., Metrical and dynamical aspects in complex analysis (Lecture Notes in Mathematics), Volume 2195, Springer; Centre Européen pour les Mathématiques, la Physiques et leurs Interactions (CEMPI), 2017, pp. 67-114 | DOI | Zbl
Cited by Sources: