We discuss some geometric aspects of , , and the space of the geodesics of equipped with some suitable structures of Riemannian holomorphic manifolds of constant sectional curvature. We also observe that is a symmetric space for the group and use it to deduce some correlations between their holomorphic Riemannian metrics.
@article{TSG_2017-2019__35__9_0, author = {Christian El Emam}, title = {On $\protect \mathrm{PSL}(2,\protect \mathbb{C})$ and on the space of geodesics of $\protect \mathbb{H}^3$ as holomorphic {Riemannian} manifolds}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {9--21}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {35}, year = {2017-2019}, doi = {10.5802/tsg.361}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.361/} }
TY - JOUR AU - Christian El Emam TI - On $\protect \mathrm{PSL}(2,\protect \mathbb{C})$ and on the space of geodesics of $\protect \mathbb{H}^3$ as holomorphic Riemannian manifolds JO - Séminaire de théorie spectrale et géométrie PY - 2017-2019 SP - 9 EP - 21 VL - 35 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.361/ DO - 10.5802/tsg.361 LA - en ID - TSG_2017-2019__35__9_0 ER -
%0 Journal Article %A Christian El Emam %T On $\protect \mathrm{PSL}(2,\protect \mathbb{C})$ and on the space of geodesics of $\protect \mathbb{H}^3$ as holomorphic Riemannian manifolds %J Séminaire de théorie spectrale et géométrie %D 2017-2019 %P 9-21 %V 35 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.361/ %R 10.5802/tsg.361 %G en %F TSG_2017-2019__35__9_0
Christian El Emam. On $\protect \mathrm{PSL}(2,\protect \mathbb{C})$ and on the space of geodesics of $\protect \mathbb{H}^3$ as holomorphic Riemannian manifolds. Séminaire de théorie spectrale et géométrie, Volume 35 (2017-2019), pp. 9-21. doi : 10.5802/tsg.361. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.361/
[1] Francesco Bonsante; Christian El Emam On immersions of surfaces into and geometric consequence (2002) (https://arxiv.org/abs/2002.00810)
[2] Sorin Dumitrescu Métriques riemanniennes holomorphes en petite dimension, Ann. Inst. Fourier, Volume 51 (2001) no. 6, pp. 1663-1690 | DOI | Numdam | MR | Zbl
[3] Sorin Dumitrescu; Abdelghani Zeghib Global rigidity of holomorphic Riemannian metrics on compact complex 3-manifolds, Math. Ann., Volume 345 (2009) no. 1, pp. 53-81 | DOI | MR | Zbl
[4] Shoshichi Kobayashi; Katsumi Nomizu Foundations of differential geometry. Vol. II., Wiley Classics Library, 1969, John Wiley & Sons, 1969 | Zbl
[5] Claude R. LeBrun H-space with a cosmological constant, Proc. R. Soc. Lond., Volume 380 (1982), pp. 171-185 | MR | Zbl
[6] Claude R. LeBrun Spaces of complex null geodesics in complex-Riemannian geometry, Trans. Am. Math. Soc., Volume 278 (1983) no. 1, pp. 209-231 | DOI | MR | Zbl
[7] Dong Hoon Lee The structure of complex Lie groups, CRC Research Notes in Mathematics, 429, Chapman & Hall/CRC, 2002 | MR | Zbl
Cited by Sources: