On PSL(2,) and on the space of geodesics of 3 as holomorphic Riemannian manifolds
Séminaire de théorie spectrale et géométrie, Tome 35 (2017-2019), pp. 9-21.

We discuss some geometric aspects of PSL(2,), SL(2,), and the space 𝔾 of the geodesics of 3 equipped with some suitable structures of Riemannian holomorphic manifolds of constant sectional curvature. We also observe that 𝔾 is a symmetric space for the group PSL(2,) and use it to deduce some correlations between their holomorphic Riemannian metrics.

Publié le :
DOI : 10.5802/tsg.361

Christian El Emam 1

1 Dipartimento di Matematica Felice Casorati, Universita degli Studi di Pavia, Via Ferrata 5, 27100, Pavia, (Italy)
@article{TSG_2017-2019__35__9_0,
     author = {Christian El Emam},
     title = {On $\protect \mathrm{PSL}(2,\protect \mathbb{C})$ and on the space of geodesics of $\protect \mathbb{H}^3$ as holomorphic {Riemannian} manifolds},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {9--21},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {35},
     year = {2017-2019},
     doi = {10.5802/tsg.361},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.361/}
}
TY  - JOUR
AU  - Christian El Emam
TI  - On $\protect \mathrm{PSL}(2,\protect \mathbb{C})$ and on the space of geodesics of $\protect \mathbb{H}^3$ as holomorphic Riemannian manifolds
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2017-2019
SP  - 9
EP  - 21
VL  - 35
PB  - Institut Fourier
PP  - Grenoble
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.361/
DO  - 10.5802/tsg.361
LA  - en
ID  - TSG_2017-2019__35__9_0
ER  - 
%0 Journal Article
%A Christian El Emam
%T On $\protect \mathrm{PSL}(2,\protect \mathbb{C})$ and on the space of geodesics of $\protect \mathbb{H}^3$ as holomorphic Riemannian manifolds
%J Séminaire de théorie spectrale et géométrie
%D 2017-2019
%P 9-21
%V 35
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.361/
%R 10.5802/tsg.361
%G en
%F TSG_2017-2019__35__9_0
Christian El Emam. On $\protect \mathrm{PSL}(2,\protect \mathbb{C})$ and on the space of geodesics of $\protect \mathbb{H}^3$ as holomorphic Riemannian manifolds. Séminaire de théorie spectrale et géométrie, Tome 35 (2017-2019), pp. 9-21. doi : 10.5802/tsg.361. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.361/

[1] Francesco Bonsante; Christian El Emam On immersions of surfaces into SL(2,C) and geometric consequence (2002) (https://arxiv.org/abs/2002.00810)

[2] Sorin Dumitrescu Métriques riemanniennes holomorphes en petite dimension, Ann. Inst. Fourier, Volume 51 (2001) no. 6, pp. 1663-1690 | DOI | Numdam | MR | Zbl

[3] Sorin Dumitrescu; Abdelghani Zeghib Global rigidity of holomorphic Riemannian metrics on compact complex 3-manifolds, Math. Ann., Volume 345 (2009) no. 1, pp. 53-81 | DOI | MR | Zbl

[4] Shoshichi Kobayashi; Katsumi Nomizu Foundations of differential geometry. Vol. II., Wiley Classics Library, 1969, John Wiley & Sons, 1969 | Zbl

[5] Claude R. LeBrun H-space with a cosmological constant, Proc. R. Soc. Lond., Volume 380 (1982), pp. 171-185 | MR | Zbl

[6] Claude R. LeBrun Spaces of complex null geodesics in complex-Riemannian geometry, Trans. Am. Math. Soc., Volume 278 (1983) no. 1, pp. 209-231 | DOI | MR | Zbl

[7] Dong Hoon Lee The structure of complex Lie groups, CRC Research Notes in Mathematics, 429, Chapman & Hall/CRC, 2002 | MR | Zbl

Cité par Sources :