We discuss some geometric aspects of , , and the space of the geodesics of equipped with some suitable structures of Riemannian holomorphic manifolds of constant sectional curvature. We also observe that is a symmetric space for the group and use it to deduce some correlations between their holomorphic Riemannian metrics.
@article{TSG_2017-2019__35__9_0,
author = {Christian El Emam},
title = {On $\protect \mathrm{PSL}(2,\protect \mathbb{C})$ and on the space of geodesics of $\protect \mathbb{H}^3$ as holomorphic {Riemannian} manifolds},
journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
pages = {9--21},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {35},
year = {2017-2019},
doi = {10.5802/tsg.361},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.361/}
}
TY - JOUR
AU - Christian El Emam
TI - On $\protect \mathrm{PSL}(2,\protect \mathbb{C})$ and on the space of geodesics of $\protect \mathbb{H}^3$ as holomorphic Riemannian manifolds
JO - Séminaire de théorie spectrale et géométrie
PY - 2017-2019
SP - 9
EP - 21
VL - 35
PB - Institut Fourier
PP - Grenoble
UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.361/
DO - 10.5802/tsg.361
LA - en
ID - TSG_2017-2019__35__9_0
ER -
%0 Journal Article
%A Christian El Emam
%T On $\protect \mathrm{PSL}(2,\protect \mathbb{C})$ and on the space of geodesics of $\protect \mathbb{H}^3$ as holomorphic Riemannian manifolds
%J Séminaire de théorie spectrale et géométrie
%D 2017-2019
%P 9-21
%V 35
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.361/
%R 10.5802/tsg.361
%G en
%F TSG_2017-2019__35__9_0
Christian El Emam. On $\protect \mathrm{PSL}(2,\protect \mathbb{C})$ and on the space of geodesics of $\protect \mathbb{H}^3$ as holomorphic Riemannian manifolds. Séminaire de théorie spectrale et géométrie, Tome 35 (2017-2019), pp. 9-21. doi: 10.5802/tsg.361
[1] On immersions of surfaces into and geometric consequence (2002) (https://arxiv.org/abs/2002.00810)
[2] Métriques riemanniennes holomorphes en petite dimension, Ann. Inst. Fourier, Volume 51 (2001) no. 6, pp. 1663-1690 | Numdam | MR | DOI | Zbl
[3] Global rigidity of holomorphic Riemannian metrics on compact complex 3-manifolds, Math. Ann., Volume 345 (2009) no. 1, pp. 53-81 | MR | DOI | Zbl
[4] Foundations of differential geometry. Vol. II., Wiley Classics Library, 1969, John Wiley & Sons, 1969 | Zbl
[5] H-space with a cosmological constant, Proc. R. Soc. Lond., Volume 380 (1982), pp. 171-185 | MR | Zbl
[6] Spaces of complex null geodesics in complex-Riemannian geometry, Trans. Am. Math. Soc., Volume 278 (1983) no. 1, pp. 209-231 | MR | DOI | Zbl
[7] The structure of complex Lie groups, CRC Research Notes in Mathematics, 429, Chapman & Hall/CRC, 2002 | MR | Zbl
Cité par Sources :

