@article{TSG_2002-2003__21__43_0, author = {Henri Anciaux}, title = {Mean curvature flow and self-similar submanifolds}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {43--53}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {21}, year = {2002-2003}, doi = {10.5802/tsg.332}, zbl = {1053.53044}, mrnumber = {2052823}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.332/} }
TY - JOUR AU - Henri Anciaux TI - Mean curvature flow and self-similar submanifolds JO - Séminaire de théorie spectrale et géométrie PY - 2002-2003 SP - 43 EP - 53 VL - 21 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.332/ DO - 10.5802/tsg.332 LA - en ID - TSG_2002-2003__21__43_0 ER -
%0 Journal Article %A Henri Anciaux %T Mean curvature flow and self-similar submanifolds %J Séminaire de théorie spectrale et géométrie %D 2002-2003 %P 43-53 %V 21 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.332/ %R 10.5802/tsg.332 %G en %F TSG_2002-2003__21__43_0
Henri Anciaux. Mean curvature flow and self-similar submanifolds. Séminaire de théorie spectrale et géométrie, Volume 21 (2002-2003), pp. 43-53. doi : 10.5802/tsg.332. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.332/
[AbLa] U. Abresch, J. Langer, The normalized curves hortening flow and homothetic solutions, J. of differential geometry, 23 ( 1986), 175-196 | MR | Zbl
[Anc] H. Anciaux, Self-similar equivariant submanifolds in ℝ2n preprint, available at http://www.phys.univ-tours.fr/~anciaux/papers/self.ps
[Ang] S. Angenent, Shrinking donuts, in Nonlinear diffusion reaction equations & their equilïbrium, States3, editor N.G. Lloyd, Birkauser, Boston, 1992. | MR
[AIV] S. Angenent, T. Ilmanen, Jj.L. Velázquez, Fattening from smooth initial data in mean curvature flow, in préparation.
[CaUr] I. Castro, F. Urbano, On a Minimal Lagrangian Submanifold of Cn Foliated by Spheres, Mich. Math. J., 46 ( 1999), 71-82 | MR | Zbl
[Ch] D.L. Chopp, Numerical Computations of Self-Similar Solutions for Mean Curvature Flow, Exper. Math. 3 ( 1994), 1-16 | MR | Zbl
[EMS] J. Escher, U. Mayer, G. Simonett, The surface tension flow for immersed hypersurfaces, SIAM J. Math. Anal. 29 ( 1998), 1419-1433 | MR | Zbl
[Gr] M. Grayson, The heat equation shrinks embedded plane curves to round circles Journal of Differential Geometry, 26 ( 1987), 285. | MR | Zbl
[HaLa] R. Harvey, H.B. Lawson, Calibrated geometries, Actz Mathematica, 148 ( 1982), 47-157. | MR | Zbl
[Ham] R. Hamilton, Three manifolds with positive Ricci curvatures, J. of Diff. Geom. 24 ( 1982), 255-306. | MR | Zbl
[Hu] G. Huisken, Flow by Mean Curvature of Convex Surfaces into Spheres, Journal of Differential Geometry, 20 ( 1984), 237-266. | MR | Zbl
[Hull] G. Huisken and T. Ilmanen The inverse mean curvature flow and the Riemannian Penrose inequality available to http://www.math.ethz.ch/~ilmanen./papers/hp.ps. | Zbl
[II] Tom Ilmanen, Lectures on the mean curvature flow, http://www.math.ethz.ch/~ilmanen/papers/notes.ps.
[KuSc] E. Kuwert AND R. Schatlze, The Willmore flow with small initial energy, Journal of Differential Geometry, 57 ( 1998),1-22. | Zbl
[Oh] Y. G. Oh, Second variation and stabilities of minimal Lagrangian submanifolds in Kaher manifolds, Invent. Math., 101 ( 1990), 501-519. | EuDML | MR | Zbl
[Pe] G. Perelman, The entropy formula for the Ricci flow and its geometrie application, preprint DG/0211159. | Zbl
[Sm] K. Smoczyk, Angle theorems for the Lagrangian mean curvature flow, preprint dg-da/9605005. | MR | Zbl
[Wa] M.-T. Wang, Mean Curvature Flows in Higher Codimension, proceedings of International Congress of Chinese Mathematicians, 2001.
[Wi] T.J. Willmore, Riemannian geometry, Oxford Sciences Publications. | MR | Zbl
Cited by Sources: