We prove a 2-terms Weyl formula for the counting function of the spectrum of the Laplace operator in the Euclidean disk with a sharp remainder estimate .
On montre une formule de Weyl à deux termes pour la fonction de comptage du spectre de l’opérateur de Laplace sur le disque euclidien, avec un reste précis en .
@article{TSG_2010-2011__29__1_0, author = { Yves Colin de Verdi\`ere}, title = {On the remainder in the {Weyl} formula for the {Euclidean} disk}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {1--13}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {29}, year = {2010-2011}, doi = {10.5802/tsg.283}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.283/} }
TY - JOUR AU - Yves Colin de Verdière TI - On the remainder in the Weyl formula for the Euclidean disk JO - Séminaire de théorie spectrale et géométrie PY - 2010-2011 SP - 1 EP - 13 VL - 29 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.283/ DO - 10.5802/tsg.283 LA - en ID - TSG_2010-2011__29__1_0 ER -
%0 Journal Article %A Yves Colin de Verdière %T On the remainder in the Weyl formula for the Euclidean disk %J Séminaire de théorie spectrale et géométrie %D 2010-2011 %P 1-13 %V 29 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.283/ %R 10.5802/tsg.283 %G en %F TSG_2010-2011__29__1_0
Yves Colin de Verdière. On the remainder in the Weyl formula for the Euclidean disk. Séminaire de théorie spectrale et géométrie, Volume 29 (2010-2011), pp. 1-13. doi : 10.5802/tsg.283. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.283/
[1] M. Abramowitz & I. Stegun, Handbook of Mathematical Functions. National Bureau of Standards Applied Mathematics Series 55, 10th edition (1972).
[2] G.B. Airy, On the Intensity of Light in the neighborhood of a Caustic. Transactions of the Cambridge Philosophical Society 6:379–402 (1838).
[3] Y. Colin de Verdière, Nombre de points entiers dans une famille homothétique de domaines de . Ann. Scient. ENS 10 (4):559–575 (1977). | Numdam | MR | Zbl
[4] Y. Colin de Verdière, Spectre joint d’opérateurs pseudo-différentiels qui commutent II. Le cas intégrable. Math. Zeitschrift 171:51–73 (1980). | MR | Zbl
[5] Y. Colin de Verdière, V. Guillemin & D. Jerison, Singularities of the wave trace near cluster points of the length spectrum. arXiv:1101.0099v1 (2011). | MR
[6] Y. Colin de Verdière & B. Parisse, Singular Bohr-Sommerfeld rules. Comm. Math. Phys. 205(2):459–500 (1999). | MR | Zbl
[7] Y. Colin de Verdière & San Vũ Ngọc, Singular Bohr-Sommerfeld rules for 2D integrable systems. Ann. Sci. École Norm. Sup. (4) 36:1–55 (2003). | Numdam | MR | Zbl
[8] V. Guillemin & D. Schaeffer, Remarks on a paper of D. Ludwig. Bull. of the Amer. Math. Soc. 79:382–385 (1973). | MR | Zbl
[9] C. S. Herz, On the number of lattice points in a convex set. Amer. J. Math. 84: 126–133 (1962). | MR | Zbl
[10] F. Hlawka, Über Integrale auf konvexen Körpern I. Monatsh. Math. 54:1–36 (1950). | MR | Zbl
[11] V. Ivrii, The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary. Functional Analysis and its Applications 14 (2):25–34 (1980). | MR | Zbl
[12] N. V. Kuznecov & B. V. Fedosov, An asymptotic formula for the eigenvalues of a circular membrane. Differencial’nye Uravnenija, 1:1682–1685 (1965) (English translation: Differential Equations 1:1326–1329 (1965)) . | MR | Zbl
[13] V. F. Lazutkin & D. Ya. Terman, Estimation of the remainder term in the Weyl formula. Functional Analysis and its Applications 15:299–300 (1982). | Zbl
[14] E. Mathieu, Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique. Journal de Liouville 13(2):137–203 (1868).
[15] F.W.J. Olver, The Asymptotic Expansion of Bessel Functions of Large Order. Phil. Trans. R. Soc. Lond. A 247:328–368 (1954). | MR | Zbl
[16] J. G. van der Corput, Über Gitterpunkte in der Ebene. Math. Ann. 81(1): 1–20 (1920). | MR
[17] B. Randol, A lattice-point problem. Trans. Amer. Math. Soc. 121:257–268 (1966). | MR | Zbl
[18] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71(4):441–479 (1912). | MR
Cited by Sources: