@article{TSG_2008-2009__27__17_0, author = {Yves de Cornulier}, title = {G\'eom\'etries mod\`eles de dimension trois}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {17--43}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {27}, year = {2008-2009}, doi = {10.5802/tsg.269}, mrnumber = {2799145}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.269/} }
TY - JOUR AU - Yves de Cornulier TI - Géométries modèles de dimension trois JO - Séminaire de théorie spectrale et géométrie PY - 2008-2009 SP - 17 EP - 43 VL - 27 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.269/ DO - 10.5802/tsg.269 LA - fr ID - TSG_2008-2009__27__17_0 ER -
%0 Journal Article %A Yves de Cornulier %T Géométries modèles de dimension trois %J Séminaire de théorie spectrale et géométrie %D 2008-2009 %P 17-43 %V 27 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.269/ %R 10.5802/tsg.269 %G fr %F TSG_2008-2009__27__17_0
Yves de Cornulier. Géométries modèles de dimension trois. Séminaire de théorie spectrale et géométrie, Volume 27 (2008-2009), pp. 17-43. doi : 10.5802/tsg.269. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.269/
[1] L. Bessières; G. Besson; M. Boileau; S. Maillot; J. Porti Geometrisation of 3-manifolds Livre en préparation (juin 2009)
[2] Laurent Bessières Conjecture de Poincaré : la preuve de R. Hamilton et G. Perelman, Gaz. Math. (2005) no. 106, pp. 7-35 | MR | Zbl
[3] Armand Borel Compact Clifford-Klein forms of symmetric spaces, Topology, Volume 2 (1963), pp. 111-122 | MR | Zbl
[4] Bruce Kleiner; John Lott Notes on Perelman’s papers, Geom. Topol., Volume 12 (2008) no. 5, pp. 2587-2855 | MR
[5] John W. Morgan Recent progress on the Poincaré conjecture and the classification of 3-manifolds, Bull. Amer. Math. Soc. (N.S.), Volume 42 (2005) no. 1, p. 57-78 (electronic) | MR | Zbl
[6] G. D. Mostow Self-adjoint groups, Ann. of Math. (2), Volume 62 (1955), pp. 44-55 | MR | Zbl
[7] Grigori Perelman The entropy formula for the Ricci flow and its geometric applications (2002) (arXiv/0211.5159) | Zbl
[8] Grigori Perelman Finite extinction time for the solutions to the Ricci flow on certain three-manifolds (2003) (arXiv/0307.5245) | Zbl
[9] Grigori Perelman Ricci flow with surgery on three-manifolds (2003) (arXiv/0303.5109) | Zbl
[10] Peter Scott The Geometries of 3-Manifolds, Bull. London Math. Soc., Volume 15 (1983) no. 5, pp. 401-487 | MR | Zbl
[11] William P. Thurston The Geometry and Topology of Three-Manifolds (1980) (Princeton University Notes)
[12] William P. Thurston Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.), Volume 6 (1982) no. 3, pp. 357-381 | MR | Zbl
[13] William P. Thurston Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997 (Edited by Silvio Levy) | MR | Zbl
Cited by Sources: