On étudie quelques équations complètement non linéaires issues de la géométrie conforme. Par une méthode de flot géométrique, on prouve l’existence des solutions. En utilisant ce résultat analytique, on obtient un théorème sur la topologie de la variété : soit une variété riemannienne compacte de dimension 3. S’il existe une metrique à courbure scalaire strictement positive telle que l’intégrale de la -courbure scalaire soit positive, alors est difféomorphe à un quotient de la sphere.
@article{TSG_2006-2007__25__211_0, author = {Yuxin Ge}, title = {Probl\`emes de {Yamabe} g\'en\'eralis\'es et ses applications}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {211--226}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, year = {2006-2007}, doi = {10.5802/tsg.257}, mrnumber = {2478818}, zbl = {1163.53325}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.257/} }
TY - JOUR AU - Yuxin Ge TI - Problèmes de Yamabe généralisés et ses applications JO - Séminaire de théorie spectrale et géométrie PY - 2006-2007 SP - 211 EP - 226 VL - 25 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.257/ DO - 10.5802/tsg.257 LA - fr ID - TSG_2006-2007__25__211_0 ER -
%0 Journal Article %A Yuxin Ge %T Problèmes de Yamabe généralisés et ses applications %J Séminaire de théorie spectrale et géométrie %D 2006-2007 %P 211-226 %V 25 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.257/ %R 10.5802/tsg.257 %G fr %F TSG_2006-2007__25__211_0
Yuxin Ge. Problèmes de Yamabe généralisés et ses applications. Séminaire de théorie spectrale et géométrie, Volume 25 (2006-2007), pp. 211-226. doi : 10.5802/tsg.257. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.257/
[1] Aubin, Métriques riemanniennes et courbure, J. Differential Geometry 4 (1970), 383–424. | MR | Zbl
[2] T. Aubin, Équations différentilles non linéaires et probléme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296. | MR | Zbl
[3] S. Brendle and J. Viaclovsky, A variational characterization for , Calc. Var. P. D. E. 20 (2004), 399–402. | MR | Zbl
[4] G. Catino and Z. Djadli, Integral pinched 3-manifolds are space forms, ArXiv : math.DG/07070338.
[5] A. Chang, M. Gursky and P. Yang, An equation of Monge-ampère type in conformal geometry, and four manifolds of positive Ricci curvature, Ann. of Math.,155 (2002), 709-787. | MR | Zbl
[6] A. Chang, Gursky and P. Yang, An a priori estimates for a fully nonlinear equation on Four-manifolds, J. D’Analysis Math., 87 (2002), 151–186. | Zbl
[7] A. Chang, Gursky and P. Yang, Entire solutions of a fully nonlinear equation, Lectures on partial differential equations, 43–60, New Stud. Adv. Math., 2, Int. Press, Somerville, MA, 2003. | MR
[8] A. Chang, Gursky and P. Yang, A conformally invariant sphere theorem in four dimensions, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 105–143. | EuDML | Numdam | Zbl
[9] S. Chen, Local estimates for some fully nonlinear elliptic equations, Int. Math. Res. Not. 2005 (2005), 3403–3425. | MR
[10] A. Futaki, Scalar-flat closed manifolds not admitting positive scalar curvature metrics, Invent. Math., 112 (1993), 23–29. | MR | Zbl
[11] Z. Gao and S.T. Yau, The existence of negatively Ricci curved metrics on three-manifolds., Invent. Math. , 85 (1986), 637–652. | MR | Zbl
[12] Y. Ge, C.S.Lin and G. Wang, On the -scalar curvature, prépublication.
[13] Y. Ge and G. Wang, On a fully nonlinear Yamabe problem, Ann. Sci. École Norm. Sup., 39 (2006) 569–598. | Numdam | MR | Zbl
[14] Y. Ge and G. Wang, On a quotient conformal equation, to appear in Int. Math. Res. Not..
[15] Y. Ge and G. Wang, en préparation.
[16] M. Gromov and H. B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), 423–434. | MR | Zbl
[17] P. Guan, Topics in Geometric Fully Nonlinear Equations, Lecture Notes, http ://www.math.mcgill.ca/guan/notes.html
[18] P. Guan, C.-S. Lin and G. Wang, local gradient estimates for conformal quotient equations, to appear in Int. J. Math. | MR | Zbl
[19] P. Guan and G. Wang, Local estimates for a class of fully nonlinear equations arising from conformal geometry, Intern. Math. Res. Not. , 2003, (2003), 1413-1432. | MR | Zbl
[20] P. Guan and G. Wang, A fully nonlinear conformal flow on locally conformally flat manifolds, J. reine und angew. Math., 557, (2003), 219-238. | MR | Zbl
[21] P. Guan and G. Wang, Geometric inequalities on locally conformally flat manifolds, Duke Math. J., 124, (2004), 177-212. | MR | Zbl
[22] M. Gursky and J. Viaclovsky, A new variational characterization of three-dimensional space forms. Invent. Math. 145 (2001), no. 2, 251–278. | MR | Zbl
[23] M. Gursky and J. Viaclovsky, Volume comparison and the -Yamabe problem, Adv. in Math. 187 (2004), 447-487. | MR | Zbl
[24] M. Gursky and J. Viaclovsky, A fully nonlinear equation on 4-manifolds with positive scalar curvature, J. Diff. Geom., 63, (2003), 131-154. | MR | Zbl
[25] M. Gursky and J. Viaclovsky, Prescribing symmetric functions of the eigenvalues of the Ricci tensor, to appear in Annals Math. | MR
[26] M. Gursky and J. Viaclovsky, Fully nonlinear equations on Riemannian manifolds with negative curvature, Indiana Univ. Math. J., 52 (2003), 399–419. | MR | Zbl
[27] R. Hamilton, Three-manifolds with positive Ricci curvature. J. Differential Geom. , 17 (1982), 255–306. | MR | Zbl
[28] N. Hitchin, Harmonic spinors, Adv. Math. ,14 (1974) 1–55. | MR | Zbl
[29] J. Kazdan and F. Warner, Scalar curvature and conformal deformation of Riemannian structure. J. Differential Geometry, 10 (1975), 113–134. | MR | Zbl
[30] J. Kazdan and F. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures. Ann. of Math. (2) 101 (1975), 317–331. | MR | Zbl
[31] A. Li and Y. Li, On some conformally invariant fully nonlinear equations, Comm. Pure Appl. Math., 56 (2003), 1416–1464. | MR
[32] A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris, 257 (1963) 7–9. | MR | Zbl
[33] J. Lohkamp, Metrics of negative Ricci curvature, Ann. of Math. (2) 140 (1994), 655–683. | MR | Zbl
[34] R. Schoen, Conformal deformation of a Riemannian metric to constant curvature, J. Diff. Geom., 20 (1984), 479-495. | MR | Zbl
[35] R. Schoen ans S. T. Yau, On the structure of manifolds with positive scalar curvature. Manuscripta Math. 28 (1979), 159–183. | MR | Zbl
[36] W.M. Sheng, N.Trudinger, X.-J. Wang the Yamabe problem for higher order curvatures, ArXiv : math.DG/0505463. | MR
[37] S. Stolz, Simply connected manifolds of positive scalar curvature. Ann. of Math. (2) 136 (1992), 511–540. | MR | Zbl
[38] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. | MR | Zbl
[39] J. Viaclovsky, Conformal geometry, contact geometry and the calculus of variations, Duke J. Math. 101 (2000), no. 2, 283-316. | MR | Zbl
[40] J. Viaclovsky, Estimates and some existence results for some fully nonlinear elliptic equations on Riemannian manifolds, Comm. Anal. Geom. 10 (2002), 815-847. | MR | Zbl
[41] J. Viaclovsky Conformal geometry and fully nonlinear equations. Arxiv : DG/0609158 | MR
[42] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., 12 (1960), 21–37. | MR | Zbl
Cited by Sources: