There is still much to learn about discrete subgroups of PU(,1), the group of holomorphic isometries of the complex hyperbolic n-space. Given a finitely generated group G, describing the discrete and faithful representation of G into PU(,1) is a difficult task, which has been carried out in only few cases. In this note we expose some results about Lagrangian triangle groups in the frame of PU(2,1). These groups are generated by three antiholomorphic isometric involutions. They are connected to many of the known examples of discrete subgroups of PU(2,1). The main result stated here is the existence of a one parameter family of embeddings of the Teichmueller space of the once punctured torus into the PU(2,1)-representation variety of the free group of rank two. These embeddings are described using Lagrangian triangle groups.
Nous présentons quelques résultats au sujet des groupes engendrés par trois involutions antiholomorphes dans le cadre du plan hyperbolique complexe .
@article{TSG_2006-2007__25__189_0, author = {Pierre Will}, title = {Groupes triangulaires lagrangiens en g\'eom\'etrie hyperbolique complexe}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {189--209}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, year = {2006-2007}, doi = {10.5802/tsg.256}, mrnumber = {2478817}, zbl = {1159.32007}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.256/} }
TY - JOUR AU - Pierre Will TI - Groupes triangulaires lagrangiens en géométrie hyperbolique complexe JO - Séminaire de théorie spectrale et géométrie PY - 2006-2007 SP - 189 EP - 209 VL - 25 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.256/ DO - 10.5802/tsg.256 LA - fr ID - TSG_2006-2007__25__189_0 ER -
%0 Journal Article %A Pierre Will %T Groupes triangulaires lagrangiens en géométrie hyperbolique complexe %J Séminaire de théorie spectrale et géométrie %D 2006-2007 %P 189-209 %V 25 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.256/ %R 10.5802/tsg.256 %G fr %F TSG_2006-2007__25__189_0
Pierre Will. Groupes triangulaires lagrangiens en géométrie hyperbolique complexe. Séminaire de théorie spectrale et géométrie, Volume 25 (2006-2007), pp. 189-209. doi : 10.5802/tsg.256. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.256/
[1] M. Deraux, E. Falbel, and J. Paupert. New constructions of fundamental polyhedra in complex hyperbolic space. Acta Math., 194 :155–201, 2005. | MR | Zbl
[2] E. Falbel and P.V. Koseleff. A circle of modular groups in . Math. Res. Let., 9 :379–391, 2002. | MR | Zbl
[3] E. Falbel and P.V. Koseleff. Rigidity and flexibility of triangle groups in complex hyperbolic geometry. Topology, 41, 2002. | MR | Zbl
[4] E. Falbel and J. Parker. The moduli space of the modular group. Inv. Math., 152, 2003. | MR
[5] E. Falbel and V. Zocca. A oincaré polyhedron theorem for complex hyperbolic geometry. J. reine angew. Math., 516 :133–158, 1999. | MR | Zbl
[6] W. Goldman. Complex Hyperbolic Geometry. Oxford University Press, Oxford, 1999. | MR | Zbl
[7] W. Goldman and J. Parker. Complex hyperbolic ideal triangle groups. Journal für dir reine und angewandte Math., 425 :71–86, 1992. | MR | Zbl
[8] N. Gusevskii and J.R. Parker. Complex hyperbolic quasi-fuchsian groups and oledo’s invariant. Geom. Ded., 97 :151–185, 2003. | Zbl
[9] G. D. Mostow. A remarkable class of polyhedra in complex hyperbolic space. Pac. J. Math., 86 :171–276, 1980. | MR | Zbl
[10] J. Parker and I. Platis. Open sets of maximal dimension in complex hyperbolic quasi-fuchsian space. J. Diff. Geom, 73 :319–350, 2006. | MR | Zbl
[11] A. Pratoussevitch. Traces in complex hyperbolic triangle groups. Geometriae Dedicata, 111 :159–185, 2005. | MR | Zbl
[12] H. Sandler. Traces on and complex hyperbolic ideal triangle groups. Algebras groups and geometries, 12 :139–156, 1995. | MR | Zbl
[13] R. E. Schwartz. Degenerating the complex hyperbolic ideal triangle groups. Acta Math., 186 :105–154, 2001. | MR | Zbl
[14] R. E. Schwartz. Ideal triangle groups, dented tori, and numerical analysis. Ann. of Math. (2), 153 :533–598, 2001. | MR | Zbl
[15] R. E. Schwartz. Complex hyperbolic triangle groups. Proc. Int. Math. Cong., 1 :339–350, 2002. | MR | Zbl
[16] R. E. Schwartz. A better proof of the oldman-arker conjecture. Geometry and Topology, 9, 2005. | EuDML | MR | Zbl
[17] P. Will. Groupes libres, groupes triangulaires et tore épointé dans PU(2,1). Thèse de l’université Paris VI.
[18] P. Will. Traces, cross-ratios and 2-generator subgroups of (2,1). Preprint disponible sur www.math.jussieu.fr/ will
[19] P. Will. The punctured torus and agrangian triangle groups in . J. reine angew. Math., 602 :95–121, 2007. | MR | Zbl
Cited by Sources: