Nous présentons des résultats reliant un arbre réel muni d’une action par isométries du groupe libre, sa lamination duale et les courants portés par cette dernière.
@article{TSG_2005-2006__24__9_0, author = {Arnaud Hilion}, title = {Lamination duale \`a un arbre r\'eel}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {9--21}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {24}, year = {2005-2006}, doi = {10.5802/tsg.237}, mrnumber = {2355555}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.237/} }
TY - JOUR AU - Arnaud Hilion TI - Lamination duale à un arbre réel JO - Séminaire de théorie spectrale et géométrie PY - 2005-2006 SP - 9 EP - 21 VL - 24 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.237/ DO - 10.5802/tsg.237 LA - fr ID - TSG_2005-2006__24__9_0 ER -
Arnaud Hilion. Lamination duale à un arbre réel. Séminaire de théorie spectrale et géométrie, Volume 24 (2005-2006), pp. 9-21. doi : 10.5802/tsg.237. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.237/
[1] M. Bestvina -trees in topology, geometry, and group theory, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 55-91 | MR | Zbl
[2] A. Casson; S. Bleiler Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, 9, Cambridge University Press, Cambridge, 1988 | MR | Zbl
[3] M. Cohen; M. Lustig Very small group actions on -trees and Dehn twist automorphisms, Topology, Volume 34 (1995) no. 3, pp. 575-617 | MR | Zbl
[4] T. Coulbois; A. Hilion; G. Levitt; M. Lustig (en préparation)
[5] T. Coulbois; A. Hilion; M. Lustig -trees and laminations for free groups III : Currents and dual -tree metrics (2005) (preprint available on http://junon.u-3mrs.fr/hilion/)
[6] T. Coulbois; A. Hilion; M. Lustig Non uniquely ergodic R-trees are topologically determined by their algebraic lamination (2005) (preprint available on http://junon.u-3mrs.fr/hilion/)
[7] T. Coulbois; A. Hilion; M. Lustig -trees and laminations for free groups I : Algebraic laminations (2006) (arXiv :math.GR/0609416)
[8] T. Coulbois; A. Hilion; M. Lustig -trees and laminations for free groups II : The dual lamination of an -tree (2007) (arXiv :math.GR/0702281)
[9] A. Fathi; F. Laudenbach; V. Poenaru Travaux de Thurston sur les surfaces, Astérisque, 66-67, Société Mathématique de France, Paris, 1976 | Numdam | Zbl
[10] I. Kapovich Currents on free groups (2005) (ArXiv :math.GR/0311053) | MR
[11] I. Kapovich; M. Lustig The actions of on the boundary of Outer space and on the space of currents : minimal sets and equivariant incompatibility (2006) (arXiv :math/0605548) | Zbl
[12] Michael Kapovich Hyperbolic manifolds and discrete groups, Progress in Mathematics, 183, Birkhäuser Boston Inc., Boston, MA, 2001 | MR | Zbl
[13] H. Keynes; D. Newton A “minimal”, non-uniquely ergodic interval exchange transformation, Math. Z., Volume 148 (1976) no. 2, pp. 101-105 | EuDML | Zbl
[14] G. Levitt; M. Lustig Irreducible automorphisms of have north-south dynamics on compactified outer space, J. Inst. Math. Jussieu, Volume 2 (2003), pp. 59-72 | MR | Zbl
[15] M. Lustig -trees - currents - laminations : a delicate relationship (2007) (preprint)
[16] P. Shalen Dendrology of groups : an introduction, Essays in group theory (Math. Sci. Res. Inst. Publ.), Volume 8, Springer, New York, 1987, pp. 265-319 | MR | Zbl
[17] W. Veech Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem , Trans. Amer. Math. Soc., Volume 140 (1969), pp. 1-33 | MR | Zbl
[18] K. Vogtmann Automorphisms of free groups and outer space, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), Volume 94 (2002), pp. 1-31 | MR | Zbl
Cited by Sources: