We generalize the spinorial characterization of isometric immersions of surfaces in given by T. Friedrich to surfaces in and . The main argument is the interpretation of the energy-momentum tensor associated with a special spinor field as a second fundamental form. It turns out that such a characterization of isometric immersions in terms of a special section of the spinor bundle also holds in the case of hypersurfaces in the Euclidean -space.
Keywords: spin geometry, surface, energy-momentum tensor
@article{TSG_2004-2005__23__131_0,
author = {Bertrand Morel},
title = {Surfaces in $\mathbb{S}^3$ and $\mathbb{H}^3$ via spinors},
journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
pages = {131--144},
year = {2004-2005},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {23},
doi = {10.5802/tsg.235},
mrnumber = {2270227},
zbl = {1106.53004},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.235/}
}
TY - JOUR
AU - Bertrand Morel
TI - Surfaces in $\mathbb{S}^3$ and $\mathbb{H}^3$ via spinors
JO - Séminaire de théorie spectrale et géométrie
PY - 2004-2005
SP - 131
EP - 144
VL - 23
PB - Institut Fourier
PP - Grenoble
UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.235/
DO - 10.5802/tsg.235
LA - en
ID - TSG_2004-2005__23__131_0
ER -
%0 Journal Article
%A Bertrand Morel
%T Surfaces in $\mathbb{S}^3$ and $\mathbb{H}^3$ via spinors
%J Séminaire de théorie spectrale et géométrie
%D 2004-2005
%P 131-144
%V 23
%I Institut Fourier
%C Grenoble
%U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.235/
%R 10.5802/tsg.235
%G en
%F TSG_2004-2005__23__131_0
Bertrand Morel. Surfaces in $\mathbb{S}^3$ and $\mathbb{H}^3$ via spinors. Séminaire de théorie spectrale et géométrie, Tome 23 (2004-2005), pp. 131-144. doi: 10.5802/tsg.235
[1] C. Bär, Real Killing Spinors and Holonomy, Commun. Math. Phys. 154 (1993), 509-521. | Zbl | MR
[2] —,Metrics with Harmonic Spinors, Geom. Func. Anal. 6 (1996), 899–942. | Zbl | MR
[3] C. Bär, P. Gauduchon and A. Moroianu, Generalized Cylinders in Semi-Riemannian and Spin Geometry, math.DG/0303095. | Zbl
[4] H. Baum, Th. Friedrich, R. Grunewald, and I. Kath, Twistor and Killing Spinors on Riemannian Manifolds, Teubner Verlag, Stuttgart/Leipzig, 1991. | Zbl | MR
[5] J.P. Bourguignon, O. Hijazi, J.-L. Milhorat, and A. Moroianu, A Spinorial approach to Riemannian and Conformal Geometry, Monograph, In preparation, 2004.
[6] Th. Friedrich, On the spinor representation of surfaces in Euclidean -space, J. Geom. Phys. 28 (1998), no. 1-2, 143–157. | Zbl | MR
[7] Th. Friedrich and E.-C. Kim, The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33 (2000), no. 1–2, 128–172. | Zbl | MR
[8] O. Hijazi, Lower bounds for the eigenvalues of the Dirac operator, J. Geom. Phys. 16 (1995), 27–38. | Zbl | MR
[9] R. Kusner and N. Schmitt, The Spinor Representation of Surfaces in Space, math.DG-GA/9610005.
[10] —, The Spinor Representation of Minimal Surfaces, math.DG-GA/9512003
[11] H.B. Lawson and M.L. Michelsohn, Spin Geometry, Princeton Univ. Press, 1989. | Zbl | MR
[12] B. Morel, Eigenvalue Estimates for the Dirac-Schrödinger Operators, J. Geom. Phys. 38 (2001), 1–18. | Zbl | MR
[13] —, The Energy-Momentum tensor as a second fundamental form, math.DG/0302205.
[14] I.A. Taimanov, The Weierstrass representation of closed surfaces in , Funct. Anal. Appl. 32 (1998), no. 4, 49–62. | Zbl | MR
[15] A. Trautman, Spinors and the Dirac operator on hypersurfaces I. General Theory, Journ. Math. Phys. 33 (1992), 4011–4019. | Zbl | MR
Cité par Sources :

