@article{TSG_2004-2005__23__125_0, author = {Inkang Kim}, title = {On rank one symmetric space}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {125--130}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {23}, year = {2004-2005}, doi = {10.5802/tsg.234}, mrnumber = {2270226}, zbl = {05046262}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.234/} }
TY - JOUR AU - Inkang Kim TI - On rank one symmetric space JO - Séminaire de théorie spectrale et géométrie PY - 2004-2005 SP - 125 EP - 130 VL - 23 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.234/ DO - 10.5802/tsg.234 LA - en ID - TSG_2004-2005__23__125_0 ER -
Inkang Kim. On rank one symmetric space. Séminaire de théorie spectrale et géométrie, Volume 23 (2004-2005), pp. 125-130. doi : 10.5802/tsg.234. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.234/
[1] I. Belegradek, On Mostow rigidity for variable negative curvature, Topology, 41 (2) (2002), 341-361. | MR | Zbl
[2] G. Besson, G. Courtois, S. Gallot, Entropies et Rigidités des Espaces localement symétriques de courbure strictement négative, GAFA. 5 (5) (1995), 731-799. | MR | Zbl
[3] R. Brooks, P. Perry and P. Petersen, Spectral geometry in dimension 3, Acta Math., vol 173 (2) (1994), 283-305. | MR | Zbl
[4] K. Corlette, Flat -bundles with canonical metrics, J. Diff. Geom. vol 28 (1988), no. 3, 361-382. | MR | Zbl
[5] G. Courtois and I. Kim, Isospectral finiteness on rank one manifolds, in preparation.
[6] F. Dal’Bo and I. Kim, Marked length rigidity of symmetric spaces, Comm. Math. Helvetici, vol 77 (2) (2002), 399-407. | Zbl
[7] T. Gelander, Homotopy type and volume of locally symmetric manifolds, Duke Math. J. vol 124 (2004), no. 3, 459-515. | MR | Zbl
[8] I. Kim, C. Lecuire and K. Ohshika, Convergence of freely decomposable Kleinian groups, to appear.
[9] I. Kim, Rigidity on symmetric spaces, Topology, vol 43 (2) (2004), 393-405. | MR | Zbl
[10] I. Kim, Isospectral finiteness on hyperbolic 3-manifolds, to appear in Comm. Pure. Appl. Math. | MR | Zbl
[11] I. Kim and P. Pansu, Local rigidity of quaternionic hyperbolic lattices, in preparation.
[12] H.P. McKean, Selberg’s trace formula as applied to a compact Riemann surface, Comm. Pure. Appl. Math., 25 (1972), 225-246.
[13] B. Osgood, R. Phillips and P. Sarnak, Compact isospectral sets of surfaces, J. Funct. Anal, vol 80 (1) (1988), 212-234. | MR | Zbl
[14] D. Sullivan,On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, in Riemann surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference. Annals of Math. Studies 97. Princeton, 1981. | MR | Zbl
Cited by Sources: