@article{TSG_1999-2000__18__125_0, author = {Erwann Aubry}, title = {Th\'eor\`eme de la sph\`ere}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {125--155}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {18}, year = {1999-2000}, doi = {10.5802/tsg.227}, zbl = {1078.53518}, mrnumber = {1812217}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.227/} }
TY - JOUR AU - Erwann Aubry TI - Théorème de la sphère JO - Séminaire de théorie spectrale et géométrie PY - 1999-2000 SP - 125 EP - 155 VL - 18 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.227/ DO - 10.5802/tsg.227 LA - fr ID - TSG_1999-2000__18__125_0 ER -
Erwann Aubry. Théorème de la sphère. Séminaire de théorie spectrale et géométrie, Volume 18 (1999-2000), pp. 125-155. doi : 10.5802/tsg.227. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.227/
[1] U. Abresch, D. Gromoll, On complete manifolds with nonnegative Ricci curvature, Journ. A.M.S., 3 ( 1990), 355-374. | MR | Zbl
[2] M. Anderson, Metrics of positive Ricci curvature with large diameter, Manuscripta Math., 68 ( 1990) 405-415. | EuDML | MR | Zbl
[3] I. Chavel, Riemannian geometry : a modern introduction, Cambridge Tracts in Mathematics, Cambridge university press, 1993. | MR | Zbl
[4] J. Cheeger, T. Colding, On the structure of space with Ricci curvature bounded below, J. Diff. Geom., 46 ( 1997), 404. | MR | Zbl
[5] J. Cheeger, T. Colding, Lower bounds on Ricci curvature and the almost rigidity of werped products, Ann. of Math., 144 ( 1996), 189-237. | MR | Zbl
[6] S. Y. Cheng, Eigenvalue comparison theorems and its geometric application, Math. Z., 143 ( 1975), 289-297. | EuDML | MR | Zbl
[7] S. Cheng, S. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math 28 ( 1975), 333-354. | MR | Zbl
[8] T. Colding, Shape of manifolds with positive Ricci curvature, Invent. Math., 124 ( 1996), 175. | MR | Zbl
[9] T. Colding, Large manifolds with positive Ricci curvature, Invent. Math., 124 ( 1996), 193. | MR | Zbl
[10] T. Colding, Ricci curvature and volume convergence, Annals of Maths, 145 ( 1997), 477. | MR | Zbl
[11] S. Gallot, Volumes, courbure de Ricci et convergence des variétés, Sém. Bourbaki, 835 ( 1997-1998) | Numdam
[12] S. Gallot, Variété dont le spectre ressemble à celui de la sphère, Astérisque, 80 ( 1980), 33. | MR | Zbl
[13] M. Gromov, (rédigé par J. Lafontaine et P. Pansu); Structures métriques sur les variétés riemanniennes, Textes Math., n° 1, 1981. | MR | Zbl
[14] S. Ilias, Un nouveau résultat de pincement de la première valeur propre du Laplacien et preuve de la conjecture du diamètre pincé, Annales Institut Fourier, 43 ( 1993), 843. | Numdam | MR | Zbl
[15] Obata, Certain condition for a riemannian manifold to be isometric to a sphere, J. Math. Soc. Japan, 14 ( 1962), 333-340. | MR | Zbl
[16] P. Petersen, On eigenvalue pinching in positive Ricci curvature, Preprint. | Zbl
[17] K. Shiohama, Recent developments in sphere theorems, Proc. of Symp. in Pure Math., 54 ( 1993), Part 3. | MR | Zbl
Cited by Sources: