@article{TSG_1992-1993__11__85_0, author = {David Gurarie}, title = {Closed geodesics and flat tori in spectral theory on symmetric spaces}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {85--103}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {11}, year = {1992-1993}, doi = {10.5802/tsg.133}, zbl = {0909.58056}, mrnumber = {1715945}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.133/} }
TY - JOUR AU - David Gurarie TI - Closed geodesics and flat tori in spectral theory on symmetric spaces JO - Séminaire de théorie spectrale et géométrie PY - 1992-1993 SP - 85 EP - 103 VL - 11 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.133/ DO - 10.5802/tsg.133 LA - en ID - TSG_1992-1993__11__85_0 ER -
%0 Journal Article %A David Gurarie %T Closed geodesics and flat tori in spectral theory on symmetric spaces %J Séminaire de théorie spectrale et géométrie %D 1992-1993 %P 85-103 %V 11 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.133/ %R 10.5802/tsg.133 %G en %F TSG_1992-1993__11__85_0
David Gurarie. Closed geodesics and flat tori in spectral theory on symmetric spaces. Séminaire de théorie spectrale et géométrie, Volume 11 (1992-1993), pp. 85-103. doi : 10.5802/tsg.133. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.133/
[BB] R. Balian, C. Bloch, Ann. Phys. 63 ( 1971); Ann. Phys. 64 ( 1971); Ann. Phys. 69 ( 1972); Ann. Phys. 85 ( 1974); | MR
[Bo] G. Borg, Umkerhrung der Sturm-Liouvillischen Eigebnvertanfgabe Bestimung der differentialgleichung die Eigenverte, Acta Math. 78 ( 1946), 1-96. | MR | Zbl
[Ch] J. Chazarain, Formule de Poisson pour les variétés Riemanniens, Inv. Math. 24 ( 1974), 65-82. | EuDML | MR | Zbl
[Co] Y. Colin De Verdière, 1) Spectre conjoint d'operatuers pseudodifferentials qui commutent, Math. Z, 171, 51-73 ( 1980). | EuDML | MR | Zbl
Y. Colin De Verdière 2) Sue les longuers des trajectoires periodic d'un billiard, Seminaire Sud-Rhodanien de Geometrie 111 ( 1983), 122-140. | MR | Zbl
Y. Colin De Verdière 3) Quasi-modes sur les variétés riemanniennes compactes, Inv. Math., 43 ( 1977), 15-52. | EuDML | MR | Zbl
[DG] J. Duistermaat, V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Inv. Math. 29 ( 1975), 39-79. | EuDML | MR | Zbl
[DKV] J. Duistermaat, J. Kolk, V. Varadarajan, 1) Spectra of compact locally symmetric manifolds of negative curvature, Inv. Math. 52 ( 1979), 27-93. | EuDML | MR | Zbl
J. Duistermaat, J. Kolk, V. Varadarajan 2) Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes of real semisimple Lie groups, Comp. Math. 49 ( 1983), 309-398. | EuDML | Numdam | MR | Zbl
[ERT] G. Eskin, J. Ralston, E. Trubowitz, The multidimensional Inverse spectral Problem with a periodic potential, Contem. Math. 27 ( 1984). | MR | Zbl
[Gi] P.B. Gilkey, 1) Invariance theory, the heat equation and Atiyah-Singer index theorem, Publish or Perish (Boston), 1985. | MR | Zbl
P.B. Gilkey 2) The spectral geometry of a Riemannian manifold, J. Diff. Geom., 10 ( 1975), 601-618. | MR | Zbl
[Gui] V. Guillemin, 1) Spectral theory on S2: some open questions, Adv. Math. 42 ( 1981), 283-290. | MR | Zbl
V. Guillemin 2) Some spectral results for the Laplacian on the n-sphere, Adv. Math. 27 ( 1978), 273-2S6. | MR | Zbl
V. Guillemin 3) A Szego-type Theorem for symmetric spaces, Seminar on microlocal analysis, Ann. Math. Studies, 93, Princeton Univ. Press, 1979. | MR | Zbl
V. Guillemin 4) Symplectic spinors and partial differential equations, CNRS Colloque International de Géométrie Symplectique et de Physique Mathématique, 1974, 217-252. | MR | Zbl
[GK] V. Guillemin, D. Kazdan, Some Inverse spectral results for negatively curved manifolds, Proc. Sym. Pure Appl. Math.36, ( 1980), 153-180. | Zbl
[Gur] D. Gurarie, 1) Asymptotic inverse spectral problem for anharmonic oscillators, Corn. Math. Phys. 112 ( 1987), 491-502. | MR | Zbl
D. Gurarie 2) Inverse spectral Problem for the 2-sphere Schrödinger operators with zonal potentials, Letters Math. Phys. 16 ( 1988), 313-323; | MR | Zbl
D. Gurarie 3) Two-sphere Schrödinger operators with odd potentials, Inverse Problems, 6 ( 1990); 371-378; | MR | Zbl
D. Gurarie 4) Zonal Schrödinger operators on the n-sphere: inverse spectral problem and rigidity, Corn. Math. Phys., ( 1990); 571-603. | MR | Zbl
D. Gurarie 5) Multiparameter averaging and inverse spectral problem for anharmonic oscillators in ℝn, Comp. & Math, with Appl., 22, no. 4/5, 1991, 81-92. | MR | Zbl
D. Gurarie 6) Symmetries and Laplacians: Introduction to Harmonic Analysis, Group representations and applications, North Holland Mathematics Studies Series, 1992. | MR | Zbl
D. Gurarie 7) Spectral geometry in higher ranks: closed geodesics and flat tori, Proc. of Symposia in Pure Math., AMS, 1992 (to appear). | MR | Zbl
[Gut] M. Gutzwiller, 1) Periodic orbits and classical quantization conditions, J. Math. Phys., 12 ( 1971), 343-358;
M. Gutzwiller 2) Chaos in classical and quantum mechanics, Interdise. Appl. Math., vol. 1 Springer, 1990. | MR | Zbl
[He] S. Helgason, Differential geometry and symmetric spaces, Acad. Press, 1962. | MR | Zbl
[HST] The Selberg trace formula and related topics, D.Hejhal, P.Sarnak, A.Terras, ed. Contem. Math. 53, AMS, 1986. | MR
[IMT] E. Isaacson, H.P. Mckean, E. Trubowitz, The Inverse Sturm-Liouville Problem, I, II, Comm. Pure Appl. Math. 36 ( 1983), 767-783; 37 ( 1984), 1-11. | MR | Zbl
[Ka] M. Kac, Can one hear the shape of the drum? Amer. Math. Monthly 73, ( 1966), 1-23. | MR | Zbl
[Ke] J. B. Keller, Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems, Ann. Phys. 4 ( 1985), 180-188. | MR | Zbl
[Ku] R. Kubovara, 1) Band asymptotics of eigenvalues for the Zoll manifold, Lett. Math. Phys., 16 ( 1988). | MR | Zbl
R. Kubovara 2) Spectrum of the laplacian on vector bundles over C203C0;-manifolds, Diff. Geom. ( 1988), 241-258. | Zbl
[MF] V. Maslov, M. Fedoryuk, Quasiclassical approximations for the equations of Quantum mechanics, Moskwa, Nauka, 1976. | MR | Zbl
[McS] H.P. Mckean, I.M. Singer, Curvature and the eigenvalues of the Laplacian, J. Diff. Geom. 1 ( 1967), 43-69. | MR | Zbl
[Mc] H.P. Mckean, Selberg trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math. 25 ( 1972), 225-246. | MR
[MN] S. Molchanov, M. Novitski, On spectral invariants of Schrödinger operators on the torus, Math. Phys., Funct. Anal. ( 1986), Kiev, Naukova Dumka, 34-39. | MR | Zbl
[MP] S. Munakshisundaram, A. Pleijel, Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds, Can. J. Math. 1 ( 1949). | MR | Zbl
[PT] J. Pöschel, E. Trubowitz, Inverse spectral theory, Pure and Appl. Math., v.130, Acad. Press, 1987. | MR | Zbl
[Sel] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Ind. Math. Soc. 20 ( 1956), 47-87. | MR | Zbl
[Ur] A. Uribe, 1) A symbol calculus for a class of pseudodifferential operators on Sn, J. Funct. Anal. 59 ( 1984), 535-556. | MR | Zbl
A. Uribe 2) Band invariants and closed trajectories, Adv. Math. 58 ( 1985), 285-299. | MR | Zbl
[Vo] A. Voros, 1) The WKB-Maslov method for nonseparable systems, CNRS Colloque International de Géométrie Symplectique et de Physique Mathématique, 237 ( 1974), 277-287. | MR
[Va] V.S. Varadarajan, The eigenvalue problem on negatively curved compact locally symmetric manifolds, Contem. Math., 53 ( 1986), 449-461. | MR | Zbl
[Wei] A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J. 44 ( 1977), 883-892. | MR | Zbl
[We] H. Weyl, 1) Uber die asymptotische verteilung der Eigenwerte, Gott. Nach. ( 1911), 110-117. | JFM
H. Weyl 2) Ramifications, old and new, of the eigenvalue Problem, Bull. AMS 56 ( 1950), 115-139. | MR | Zbl
Cited by Sources: