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CLOSED GEODESICS AND FLAT TORI
IN SPECTRAL THEORY ON SYMMETRIC SPACES '

David GURARIE

Closed geodesics are known to play an important role in spectral
theory of Laplacians on Riemannian manifolds M. They also
contribute to spectral theory of Schrédinger operators A+ V,
typically in the form of higher order correction to the principal
(Laplace) eigenvalue. We give a brief survey of the classical “Shape
of metric” and “Shape of potential” problems of spectral theory, and
explore the role of “length spectrum” (the length of all closed
path/geodesics), and the related “Radon transform of V”. Then we
outline some recent progress in special cases: the n-sphere theory, and
Schrodinger operators on higher rank symmetric spaces. The latter
case brings in new players: the flat tori. They naturally appear in
higher rank compact symmetric spaces and play the role of closed
geodesics here. We conclude by a list of open problems.

1. Classical spectral invariants; length spectrum and invariant Lagrangians. In
spectral theory of Laplacian H = — A or Schrédinger operators H= —A+ 1V on a
compact Riemannian manifold A one is interested in the connection between spectrum
of H on one hand and the geometry of M,V as well as the dynamics of the underlaying
classical hamiltonian flow of H in the phase-space, identified with the cotangent bundle
T*(AM). Mark Kac [Ka] asked his celebrated question “Can one hear the shape of the
drum?” and gave some examples. Similar “shape problems” can be posed for the metric

on b, potential V, etc. The well known examples of audible geometry include

e The classical heat/Weyl invariants, like by = vol(Ab); b, = area(OAM); integral
of curvature J K dv, etc. ((We]; [MP]; [McS]; [Gi]). The name reflects their derivation
: .M . .
via small-time asymptotic expansion of the heat-kernel,

n 1
et~ t TIby+ b2 + byt + ...}, n = dim(Ab). (1)

e The next important example goes under the name of length spectrum, it refers
to all closed trajectories of the underlying classical hamiltonian flow. In the case of
Laplacian it becomes the geodesic flow, so one talks about the length of all closed
geodesics on Ab. The general principle states: spectrum of A,, determines the length
spectrum {¢(v) =|v|}, plus some additional data, like Poincare numbers (that measure
the “twist of the flow” along v), and Morse indices (7). Precisely, ([BB]; [BT]: [Gut];

IAn expanded version of the lecture delivered at the Math. Physics seminar of ETH and
seminar on Geometry and Spectral theory of the University of Grenoble.
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[Ch]; [DG]; [Co3)): for any closed stable path &= &(<) there ezists an almost arithmetic
sequence of eigenvalues in specy/A:

M =2k + Tm 6+ (7). (2)
Here {6 J-} are Poincare angles and v - Morse index along <. There are several ways to
establish (2). One is based on the quasi-mode construction [{Co3), it effectively produces
an embedding of space L*(y)—L?*(M), that “almost intertwines” operators g—:z | ¥ with
the Laplacian Ay,. Another way is based on the study of the wave-kernel U, = e'l‘/ﬁ -
the fundamental solution of the wave equation:

uy + H[u] = 6(z — y) on MoxR.

It turns out that
Ak

x(t) =trU,; = zen\/—,
understood as a distribution® on R, has singularities located inside the length spectrum
{e(7)} of Mb, including the “big singularity” at t = 0 (the latter would correspond to all
trivial one-point path). Precisely, x is made (expanded into the sum) of contributions of
different closed path {7}, x =Xxo+ X x4- The Fourier transform %o of the main
singularity has an asymptotic expansion

%olp) ~ cou™ 1o T2+, a5 p — oo,
whose coefficients {cy;c,;...} are simply related to the Weyl (heat) invariants (0)-(2).
The sum of nonzeros terms yield

iZo(7)
& ee’”
(X = Xo(t) ~ 7= (3)
2 zy:m; 1 (t=e(y™))y/det(I — P()™)
Here v denotes a primitive closed classical path (geodesics), ¥™ - its mth iterate,

o() - the Morse index of v, and P(v) - the Poincare map along 7. We remark that

singular terms of the type [t—¢(v™)] ~1in (3) correspond to isolated closed path 7. In

degenerate cases (i.e. when orbits of a given period form a d-parameter family) more
d+1

singular distributions of order =5~ appear in place of (¢ — o)~ 1

Formula (3) extends the classical Poisson summation for the wave-kernel e"t‘/Z
on the n-torus T", and has a noncommutative analog, the celebrated Selberg-trace
formula on hyperbolic spaces M =H/T, Poincare half-plane modulo a discrete

2Unit.a,l'y operators U, have no “trace” in the usual sense, but integrating U, against smooth

compactly supported test-functions f on R, produce trace class operators U f=f f(t)U,dt on L*(I). So
distribution x can be defined via pairing (x; f) = trU f
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(Fuschian) subgroup T of SL(2;R), acting on H by fractional linear transformations [Sell;
[HST); [Mc]. It is worth to note, however, that in classical cases (Poisson. Selberg),
asymptotic relation (3) becomes exact.

e Our next example exhibits higher-D geometric structures that have specctral
content. Those are invariant Lagrangians (tori) in the phase-space T*(Ab), preserved by
the hamiltonian flow of H. One assumes that T*(Ab) is foliated into the n-parameter
family of such Lagrangian A(c) = A(cy;...cy), those could be for instance, the joint level
sets of n Poisson commuting integrals {I;(z;p) = ¢;}.

To quantize family {A(c)} one picks a system of fundamental cycles
{'yj(c):l <j<n-1} in each A(c) and writes the generalized Born-Sommerfeld (EBK)-
quantization rules ([Ke]; [MF]; [Gut]):

Ti(e)=§_p-dz=m(2m;+}(1)) @
7;

Here numbers {m;} vary over the integer lattice Z% and v(...) denotes the
Maslov index of A, evaluated along the cycle. Solving system (4) we get a quantized set
of Lagrangians {A,, = A(c(m)):m = (m,;..m,_,)}, hence a quantized sequence (labeled
by lattice points m € Z7}) of eigenvalues of the hamiltonian H = h(z;9),

Anm=h . 5
m=h]| A, (9)
EKB-quantization based on invariant Lagrangian provides more rich spectral

structure compared to closed path, but is limited in scope to essentially integrable
classical hamiltonian.

2. Perturbation problems. The best studied class of perturbation problems are
one-dimensional regular Sturm-Liouville (S-L) operators H = — 8% + V(x) on [0;1], with
any kind of boundary conditions: two-point; periodic; Floquet, etc. Such operators have
simple (multiplicity free) eigenvalues {,}, that admit an asymptotics expansion [Bo],

Ap = (7k) + by + bk~ 2+ ..., as k—oco. (6)

Here by = Ide, b, = I(V—bo)zdx, and higher {b;} involve certain polynomial
expressions in V and its derivatives. The correspondence V—spec(Hy,) is highly
nonunique, there are typically large (co-D) isospectral classes both in the
periodic/Floquet and the "2-point boundary” case ([IMT]; [PT]). So inverse spectral
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problem requires an infinite auxiliary set of data, like the higher KdV-parameters or
norming constants.

The multidimensional Schrédinger problems are believed to be spectrally rigid in
the sense that their isospectral classes, Iso(V), consist of small (finite-dimensional)
families obtained by natural (geometric) symmetries of the Laplacian, i.e. isometries of
A, rather than hidden KdV-type symmetries. This spectral rigidity hypothesis was
confirmed in a number of cases, the foremost is the case of negatively curved manifolds.
It was shown (under some additional technical conditions [GK]) that potential V" on a
hyperbolic manifold M is in fact uniquely determined by spec(Hy ), negatively curved
manifolds have typically no continuous internal symmetries.

Another example is the flat torus T", whose symmetries are made of all
translations and reflections. It was shown that generic potentials® V on T™ are also
spectrally rigid ([ERT]; [MN]). The case of positively curved (and highly symmetric) n-
sphere proved to be more difficult. The general rigidity hypothesis remains open, but
there is a number partial results ([Wei]; [Gui; [Co]; [Ur]; [Wi]; [Gur4-5]), that we shall
now discuss.

To proceed we. make a general comment on the role of closed path for
perturbation problems: they typically enter spectral asymptotics in the form of integrals
of V along 4, j Vds (Radon transform), or certain functionals of V. Most known
results starting frdm the 1-D Borg formula (6) to the multi-D flat (T™), hyperbolic or
spherical cases involve such “Radon transforms” in that or other form. The latter case
will be illustrated in the next section.

3. The n-sphere theory. The n-sphere Laplacian has regular distributed and
highly degenerate spectrum:

{Ap = k(k+n —1) = (k+p)? — p%k=0;1;...}, p = 2F1,
the multiplicity d, = d(},) increasing with k as O(k" ~ 1), The degeneracy results from
the underlying rotational symmetry SO(n+1). Each eigensubspace ¥, C L*(S) is
invariant under SO(n +1) and defines an irreducible representation 7*. Potential V
breaks the rotational symmetry of the problem, so spec(Hy) splits into clusters of
simple (less degenerate) eigenvalues A = {A.,, = A\, + g = 1;..d}. The clusters
3O

f course, special potentials, like V = V(z,) +... + V ,(z,,) may possess "large” (infinite) iso-

spectral classes, obtained by the KdV-flows applied to each 1-D component {V ;(z,)}.
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are asymptotically well localized. Namely, the cluster size,
[A,] ={ O(1), for even/generic V'
. Ok~ 2), for odd V

k]

while the distance between neighboring A, increases in proportion to k [Gui2]. So one
looks for spectral invariants, associated with distribution of shifts within clusters.

Such distribution is naturally described by cluster-measures,

-1
dl/k = d—k;ﬂz - [tkm).
Weinstein [Wei] studied asymptotics of measures {dv,} and proved that
sequence {dv.} converges to a continuous measure fBy(A)dA on R. The limiting density

(not surprising) turned out to be the distribution function of the Radon transform V. So
for any test function f on R one has

(F160= [ _saas, (7)
integration over the space O of closed geodesics (great circles) on S™ (fig.1). Moreover,
sequence {dv,} can be expanded in powers of k¥~ 1 similar to Borg’s expansion (7),

dv, ~ Bo+k~ 18 +... (8)

Coefficients {f,;5,...} are certain distributions on R depending on V. Weinstein
named them band-invariants, and calculated B,. The higher band-invariants involve
complicated expressions of potential and its derivatives, only two of them {3,;3,} have
been computed explicitly [Url-2], [Gur4].

Fig.1: Closed geodesics on S™ are great
circles 4 = vy(z;§) through point z in the
direction £.

E~Q eodésics O on %’" differs from the hyperbolic or flat torus cases. The
latter are either a discrete sequence of isolated path {+,} gh)'perbolic), or a discrete union of cells
Op={r |v] =€ =T~ 1, of different length £ = (ijz) % (torus), while the spherical space O
consists of a single “fat® cell O~S7(S")/T, of dim =2(n—1). It also possesses some other nice
structures, e.g. a homogeneous space of SO(n+1), complex projective variety [Gui]; {Ur]. Clearly, the
entire geodesic flow on S™ is periodic of period 2.
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Turning to the inverse problem the band invariants provide some useful
information, in particular they allow to prove spectral rigidity for special classes of
potentials (low degree spherical harmonics) on 52 [Gui]. Their use however is limited by
the fact that {8 ;} describe distributions of values of the Radon (and related) transforms.
rather than the transform itself. The latter could have been easily inverted to recover
potential V, but in general one cannot recover a function (even single-variable) from the
distribution of its values.

In recent papers [Gur2-4] we studied the class of zonal (azisymmetric) potentials
on S", i.e. functions {V} invariant under the subgroup SO(n) of rotations about the
“north pole”. Such V' clearly depend on a single variable angle 6 between point on S"
and the vertical axis (see fig.2). The corresponding Schrodinger operators posscss an
auxiliary SO(n)-symmetry. On S? it is generated by the z-component of thc angular
momentum operator J = iao, while on S™ the role of J is played either by the Lie
algebra so(n), or after a suitable “symmetry reduction” by a single operator
J=,/—A4,_, - the lower-dimensional Laplacian on S"1 Such hamiltonians are
integrable in the Liouville sense (algebra so(n) generates n—1 integrals Poisson-
commuting with classical hamiltonian of H. Those could be naturally quantized to
produce a commutative family of operators (J,;...J,,_;) commuting with H. So one can
study the joint spectral decomposition of H and {J;}, or H and J. Thus spectral shifts
{Brm} of the k-th cluster acquire an additional (bigraded) structure, index m labeling
the angular momentum of the k-th eigenfunction ¥,

H{pml = et tem)¥tm (9)
Ibiml = M '

X Fig.2: Zonal axisymmetric potentials
A depend only on angle 6 between the point
N on the sphere and the vertical axis. Their
P e O Radon transform is also a single variable
N function of the height r of the north pole N

0 i= 1'(')') of a great circle 7.

Zonal potentials allow to improve the Weinstein’s result (7) by replacing
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asymptotics of cluster-measures {dv,} by asymptotics of individual spectral shifts
{#t}.rn}. The main result [Gur4] states,

Theorem 1: Spectral shifts {u;,,} of the joint H,J-eigenvalue problem (9) admit an
asymptotic ezpansion,

Bem ~ B+~ (@) + £ 2(B) + .. (10)
The coefficients a(z);b(z);c(z) are computed ezplicitly in terms of certain
transforms of V (its even and odd parts V =V, +V ;) on [0;1]. Namely, the
reduced Radon transform® R,

i

T

®f@-f )=} | fle) ey

0

the Gegenbauer—Legendre operator (reduced Laplacian)

—(1—:1:2)d+( az )—a with o = 852

’

and operator € = ok, Precisely,

afr) =R(Ve,) = ev(r);

b(r) = —1R2(Vey);

o(r) = HR{82 + 2(n + 1)}V, +

+HHR(Ves” + Vo) — (RVe)} - 2(1 3 REL Ve +Vod))}-

In special cases of even [Gur2] and odd [Gur3] zonal potentials V on 5?, we get

{V(m)+0(k-l), even V,
Pem = k- 2U(m +0( —3), Oiid Vv,
Function U(z) is obtained by transform 4(!R —1o !R(E) applied to V

Theorem 1 provides a unique and explicit solutlon of the inverse problem for the
joint (H,J)-spectrum. It also yields local spectral rigidity for generic zonal potential on
S™, via rigidity of almost arithmetic sequences. The details are given in [Gur2-4].

Remark: Theorem 1 can be interpreted in terms of semiclassical quantization (4)
of an integrable hamiltonian H. It gives the effect of perturbation V' on spectral shifts
{#}m} of Hy in terms of two commuting integrals: A=v —Aand J=,/—4,_; (on

———————

?We remark that zonal functions {f(z)}, as well as their Radon transforms {f (1)}, depend on
a single variable z € [ — 1;1] of f that runs along the symmetry axis, while variable r of f measures the
z-coordinate of the “north pole” of the great circle 7, i.e. f(7) = f(r(7)).
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5%, J= i0p), in the form

Veffza(J/A)+A"b(J/A)+A'2c(J/A)+..., (11)
where a = Radon(V), b=... etc. When both operators A and J are quantized by the
EBK-rules (4) to their classical levels: A=k, Jy=m, on a family of 2-D (reduced)
invariant tori then (10) follows from (11).

4. Averaging method. We shall briefly outline some basic methods employed in
the n-sphere theory. They involve a suitable averaging procedure [Wei], [Gui], [Ur],
Symbolic calculi on S™ [Ur], and (in the zonal case) Zonal reduction [Gur2-4]. One
usually works with operators v/ — A and VH, those are more convenient from the view-
point of symbolic calculus® than A and H. Precisely, we take operator
A= \/— A+ (12:-1)2 - ("T'l), and write Hy, = (4+ B)%, so BxlV/V—-A4+.. One of
the main obstacles in diagonalizing operators like Hy is that Laplacian A\ and
perturbation V' do not commute. Weinstein’s remedy was to average B with a unitary
group generated by A. One conjugates B

B(t) —e™ itABez'tA,

and defines the average operator 0
T

B= 2%[ B(t)dt. (12)
Clearly, B commutes with A, and’ one can show that A + B and A+B are
“almost unitarily equivalent”,
U~ A+BU=A+B+R,
the remainder R being small relative to A, its modulus estimated by
1
|R|=(RR*)? < ConstA ~ 3.
As a consequence, spectral shifts {u,,} of A+ B are approximated by the
averaged shifts {fi;,,,} of A + B, equal to eigenvalues of B,
|ﬂkm - l_‘km | S Const k— 3.

Asymptotic distribution of the latter is then computed using the symbolic
calculus on S™ (so called Szegd limit Theorem [Gui]). To get B, one takes a test
function f on R paired with cluster-measures {dv,}, and passes to the limit k—oo,

6Taking square-roots of Laplacians, Schrédinger operators is a convenient technical device that
allows to reduce many symbolic (semiclassical) manipulations with functions {f(4)}, from the entire
unbounded phase-space T"(b) to its compact part the cosphere bundle S*().
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tr [P f(B)P, -
(f;duk)=21;§ Fltgy) = [ rkk}() k) L]ﬁjst(sn)(fosymbolB) ds.

Symbol of the conjugate operator (ydo) B(t) is obtained by composing
og=V(z)/2 €| with the hamiltonian (geodesic) flow, exp(tZ), of “symbolA” =|¢| Here

= denotes the hamiltonian vector field of “symbol A”. This yields symbol of the average
operator B,

and the latter is nothing but the Radon transform V (v), evaluated on a closed path
(great circle) 4 = 726 passing through z € S™ in the direction £ € T,*. Thus we get the
first band-invariant 3, in terms of the Radon transform V.

The above argument proves Weinstein’s Theorem. It requires further elaboration
and considerable effort to prove Theorem 1 (see [Gur2-4]). These results demonstrate
some essential features of the n-sphere Schrédinger theory, that relies heavily on
spherical symmetries of the problem and periodicity, both on the classical level
(geodesic flow), and the quantum level (operator A = v/—A with periodic spectrum).
Both features, symmetry and periodicity persist, in any rank-one symmetric space, so
all the above results can be extended to such b, as well as more general Zoll manifolds
[Wei], [Ku]. However, the higher rank spaces pose a new and very different situation.
They clearly lack periodicity, both the classical and quantum alike: the eigenvalues of
vA + Const are no more integers, and a typical geodesics does not close, but rather
wrap up densely around a flat tori. Although such space could still have a fair number
of closed path the dynamics would be dominated by aperiodic 4. The lack of periodicity
requires a modification of the basic averaging techniques: the Weinstein averages (12)
should be replaced by the ergodic averagTe‘s,

1im{1‘3T = HB(t)dt}, as T—o0.

0
In [Gur5] we developed such multiparameter averaging procedure in the context

of multi-D anharmonic oscillators on R™. These methods proved to be applicable also to
Schrédinger operators on symmetric spaces.

5. Symmetric spaces. Symmetric spaces b are natural generalizations of three
basic models in geometry: the flat R™, spherical S™ and hyperbolic H". All three spaces

possess large symmetry groups G of isometries. Those are the Euclidian motion group
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E,=R">S0(n) for R", the orthogonal group G = S$O(n+1) for S", and pseudo-
orthogonal (Lorentz) G = SO(1;n) for H,. Symmetries act transitively on each of three
spaces, so Ab = K\G (G modulo stabilizer K of some z, € Ab). Furthermore, any pair of
points {z,y} is conjugated to any other equidistant pair {z';3'} by an element of G.
Hence the only relevant parameter of any G-invariant operator on such space is the
distance d(z;y). Another characterization of all 3 spaces K\G is that stabilizer I acts
transitively on the geodesic sphere S,(zo) = {y:d(zo;y) =}, centered at z,.

Three basic geometries R"; S™; H" are examples of rank-one symmetric spaces. In
general, symmetric spaces Ab is defined as a quotient K\G of a semisimple Lie group G,
modulo its maximal compact subgroup K. Here we are mostly interested in compact
symmetric spaces, i.e. quotients of compact Lie groups G. It is known that such group G
(and its Lie algebra ®) has an involutive automorphism 6 (6> = 1), that stabilizes
subgroup K = {u € G:6(u)=u}. Such 8 splits Lie algebra ® into the direct (orthogonal)
sum | @ P, the subalgebra & of K and a subspace P. The latter could be identified
with the tangent space of b at z,={K}. Furthermore, § & >~ I, 0 B~ —1I, so the
resulting Lie brackets between the & and P -components of ® become

[R:8] C &; [K;B] C B; [BiB] C &

Space P contains a maximal abelian (Cartan) subalgebras U ~R", whose
dimension r = dim% determines the rank of b. The image of U under the exponential
map ®—G, forms a maximal geodesically flat torus v = exp¥ =~ T" in M. Geometrically
one could view space /b in the following way: as above group G acts transitively on A,
so each point x is carried into any other point, but this is no more the case with pairs of
equidistant points, or the geodesic sphere at x,. The latter is not covered by stabilizer
K, but rather is foliated into the r-parameter family of K-orbits. These r-radii
(r = rankb) play the role of a single geodesic distance d(x;y) in the rank-one case.

Let us remark that space O, of all flat r-tori {7} of a compact symmetric space
is itself a smooth manifold, whose dimension depends on dimG and rank. Group G acts
on O,., turning it into a homogeneous space K,\G, K, - stabilizer of % in G.

Symmetric spaces (both compact and non-compact) were completely classified
by Cartan (see for instance [He]; [Gur6]). Here we bring the basic examples of
irreducible globally symmetric compact spaces:

(i) SU(n)/SO(n) §: X—X (complex conjugation) r=n-—1
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(i) SU(2n)/Sp(n) 6(X)=J,XJ, !, whereJ,is r=n-1
symplectic matrix (_ I I ) in C?"

(iii) SUp+q)/S(U(p) x Ug)) 6(X) =1,,XT,,
the matrix of the indefinite (p;q)-form:
P p+q )
1Ty~ L ZTiyj;n Cre;
1 p+1
(iv) SO0(p+q)/SO(p) x SXq) 6(X)=1I,,XI,,, same I, as r = min(p;q)
above in RP*+9;
(v) SO(2n)/Un) 6(X)=J,XJ, " r=[3]
(vi) Sp(n)/U(n) X)=X=J,XJ,"! r=n.

where I, is r = nun(p;q)

Those along with a few exceptional cases exhaust the list. More general
(reducible) spaces can be decomposed into products of irreducibles b, X A, x ... The
simplest example of the sort is quotient SO(4)/SO(2) x SO(2) =~ (S?x S?)/Z, - the
product of two spheres. This example is exceptional among orthogonal types (iv), as all
others are irreducible.

Spectra of Laplacians on symmetric spaces are well known:

Ao = (a+p)® = P,
where a varies over the so called highest weight lattice A= {a =ao+ T m;a;m; €Z,}
in A. The latter is spanned by a few basic weights {ay} and all linear integral
combinations of positive roots {a;} of ® (weights of the adjoint action adx(Y') = [X;Y])
that lie in U. Weight p = %20,- represents the half sum of all positive roots taken with
their multiplicities. Let us also mention that all highest weights lie in the Weyl chamber
a sector in ¥ made of the intersection of half-spaces I'  (a;) = {X:({a j | X} > 0}, which

depends on the choice of the positive root system in 2.
We shall illustrate the foregoing with 2 examples:

1) The n-sphere: S" ~ 50(n+1)/SO(n). Here subalgebra & =~ so(n), subspace P
consists of matrices: X=X b=( —OTb 3) with columnar vector b € R"; isotropy subgroup
K = S0(n) acts on P by rotations: v~ 1X pu=X u(by Maximal abelian subalgebras
A C P are 1-dimensional (rank 1), and the exponential image of U becomes a closed
geodesics (great circle v) in S™. Lattice A C I' . (half-line) consists of integers k, and the

basic positive root {1} has multiplicity n — 1, hence p Z 7 1
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The k-th eigen of the laplacian Agn, /\k=k(k+n—1)=(k+p)2—p2, and the
eigensubspace ¥, (spherical harmonics of degree k) coincides with a #*-irreducible

component of the regular representation R of G =SO0(n+1) on S" of weight
k ~ (k;0;05...).

2) Space SU(n)/SO(n). Here the Cartan P-component is realized by real
symmetric matrices,

Z=X+iY,X€so(n)=8,Y €Sym,=P.

Fig.3. SU(3) weight lattice (marked points)
is obtained from 2 basic weights:
n=0=-%-Yand v, =G5 -1)
o by adding all integral combinations of two
\ basic roots,
ey = (1; - 1;0) and a, = (0;1; — 1).
So any a in A is equal to
a = 7y,2+ Moy +moa,
The half-sum of positive roots p coincides
with highest positive root
a3 = ag +a).
Subgroup K = SO(n) acts on P by conjugation: X—u ™ 1¥y; Cartan subalgebra
9 C P consists of all real diagonal matrices, ¥ ~R" ~ ! (hence rank = n —1). The image
of any U under the exponential map exp:P—. > becomes a geodesically flat torus in A

y=exp(A) =T~ 1 Positive roots in U = HAP =~ R" ~ 1 are of the form

H;;= diag(0;..."- . —1...); on the i-th and j-th place,

and the basis of positive roots cown. "H;= diag(...1; — 1;...). The Weyl chamber is a
sector of angle % on the right of the vertical axis (fig.3). Highest weights are obtained
from two basic weights (1; —1; —1) and (};3; — 1) by adding all integer combinations of

two basic roots (see fig.3):
a= L k;H; = diag(k;k: - ki —ky 1)
J

The half sum of positive roots: %p =sn—1n-3;.; - n+1), while the inner
product (Killing form),

1< J
So the eigenvalues of A4,

M= (kij+pi)° — pii’s
1<
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where k;; = (k;—k; _ 1) —(k;—k; _ 1 Pij=pi—P;= 2(5 —1).

6. Schrddinger operators on symmetric spaces. Turning to Schrédinger opcrators
on symmetric spaces, our first goal is to find the proper analog of the band-invariant f,.
As in the n-sphere theory (§3) spectrum of H= —A+V consists of clusters
{A\t + tpm:l <m < d(a)}, resulting from splitting degenerate eigenvalues of A. One
would like label a to vary over the lattice points @ € I'y. in the Weyl chamber of .
However, clusters {4,} of different weights {a} may overlap, if eigenvalue A, = Aj are
equal. So we need to combine clusters {A,} corresponding to equal eigenvalues
{a:\y = k?} into larger super-clusters A;. Here label k = ko = \/ |a+p|2—p?is a real
number. Another apparent difficulty is that the distances between eigenvalues of A

need not grow as a—oo, so cluster (or super-clusters) may overlap even for large
distinct a. This would limit our results to small (in norm) perturbations V.

We define a sequence of cluster-measures labeled by reals k = k, to be
—_1

where d(k) sums multiplicities {d,} of all & in a super-cluster k (i.e. Ay = ¥?).

One are interested in the asymptotic distribution of measures {duk}, when
k—oo. Guillemin [Gui3] studied a similar problem for asymptotic distribution of
“normalized” weight diagrams: £, = { — a £ 8 < a} of irreducible representations’ #°,
associated to weights o in I',. He mtroduced a sequence of discrete distribution-
measures for normalized welght dmgrams = {— B €Z,y},

I
d(a) Z §(A— Tal L ), on® e &<, (14)
and proved the following

Szego-type Theorem (Guillemin): Consider a sequence of mormalized weights

o/ | ap | =ag in the Cartan subalgebra $ C ®, the corresponding representation

spaces ¥ = ¥(a,) C L*(G) with highest weights {a}}, and orthogonal projections
Pp:L*—Y . Then

:We recall that any irreducible 7 is determined by a finite set of its weights {8} (linear

functionals on §), obtained by restricting representation-operators {r%y} on all Cartan elements

{H€S), n®| S~ & (8| H). One of them a (highest) uniquely determines #°, all other {3} in the

weight diagram A, ”are squeezed between -a and a, and transformed one into the other by Weyl

elements, a finite group generated by all (reflectional) symmetries of the root system of the pair in
$CG.
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(i) Sequence of measures dv; (14) converges to a continuous distribution Py,
supported on the weight-diagram of a.

(i1) Distribution B, coincides with a projection of the natural G-invariant measure
dey on the co-adjoint orbit Oy = O(ag) = {ady(ao):g € G}, through ag €,

duak-—r ds(\) = proj.s[do(...)], as k—oo, (15)
where projs stands for the natural projection: ®—9, determined by the Killing
inner product on Lie algebra ®.

(ii) For any 0-th order pseudo-differential operator B on G, sequence

tr(P,BP,) -
P ool

EFigA shows a weight diagram of any
positive weight o in the Weyl chamber
(lightly shaded sector) of. Lie algebra

\‘A;; : : ® =su(3). The same figure describes
i o o ) restricted weights of symmetric space

i s SU(3)/SO(3). The G-orbit of element o in

N Tl : su(3) projects down onto its weight-

i diagram (the dark shaded region 2 = 2,),

S the convex hull of a, reflected by all
elements of the Weyl group W of su(3).

i

¢

Let us notice that a G-orbit O C ®, passing through a, projects onto the region
in §, bounded by the weight-diagram A, (shaded region 2 in fig.4), and gives certain
density on f2. A similar result holds for symmetric spaces M = G/K, but this time one
takes restricted weights: a € U C BNY, and a G-orbit O in the cotangent bundle
T*(M), naturally embedded in G.

As a simple example illustration of Guillemin’s Theorem we take the 2-sphere
5%~ 50(3)/SO(2). Here a =k - integer, its weight-diagram {8 =m} coincides with
interval {—k < m < k}, the diagram measures,

k
dl/k(-‘b) = Wlﬁ; 6(3 _LE'),

clearly converges to the uniform (Lebesgue) distribution dz on [—1;1], which is easily
verified to coincide with the projection of the invariant measure {dS|n} on orbit
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0 ~ 52 C §*(5°).

Our main objective are spectral clusters of Schrédinger operators on Ab and the
corresponding cluster-measures {dv}. We shall establish the analogue of (15), where the
role of invariant measure dey will be played by a generalized Radon transform of V. The
latter is defined via integration of V' over flat tori in Ab,

V()= I7Vd’5.

Precisely, we take any sequence of cluster labels {k = k;—oc0}, and consider the

limiting set of all normalized sequences of weights {a;}, that belong to {k;} (in the
sense that ’\a_,' = k%),

Now we take a G-invariant set O(X), made up of all orbits {U(ap):aq € Z}.

Theorem 2: Given an increasing sequence {kj} of cluster-labels, the sequence of the

corresponding cluster-measures dv;, converges to a continuous limit,
j
dvp — B(A)dA; as k—oo.
j

The resulting density B(\) is equal to the distribution function of the generalized
Radon transform V' (q) restricted on the G-invariant set 8 O(Z) C S*(M).

Theorem 2 gives an improved and corrected version of the main result of [Gur7)
(Theorem 2). The argument outlined in [Gur7] remains valid, so we refer to the paper
for further details. Here we just mention that the method of [Gur7] exploits ergodic
averaging of [Gur5] (a modification of the Weinstein’s averaging for non-periodic
hamiltonians), as well as Guillemin’s Szego-type Theorem.

Concluding remarks.

e Theorem 2 represents a first step in a long range program of extending the n-
sphere Schrédinger theory to higher rank spaces. It shows that the role of closed
geodesics and the related Radon transform would be played by the flat tori. Next steps
should include derivation of higher band-invariants {8} (cf. [Ur]), and the zonal theory
along the lines of [Gur2-4]. Let us remark that symmetric spaces possess the natural
analog of zonal potentials, the K-invariant functions on A = K'\G. These are known to
—Tet us remark an important difference between rank-one and higher ranks: the former have a

single G-orbit to cover the entire co-sphere bundle $*(b), while the latter have continuous families of
such orbits.
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play an important role in the representation theory of semisimple groups.

e There is a number of related problems for Laplacians on locally-symmetric
hyperbolic spaces At =H/I'. Here H= K\G denotes a quotient of a noncompact
semisimple Lie group, modulo the maximal compact subgroup, and I' - a uniform
lattice in G, so both quotients I'\G and I'\H are compact. The classical examples is the
Poincare plane H = SL,/S0(2), modulo a Fuschian subgroup I'. The connection between
spectrum of the Laplacian and the closed geodesics is well known for Riemann surfaces,
as a consequence of the Selberg-trace formula (see [Sel};[Mc]). We conjecture, that flat
tori would play the role of closed geodesics and would contribute “asymptotic lattices”
of eigenvalues to spec(A ). Such trace-formula should be connected in some to the
known higher-rank versions of “Selberg trace formula” (cf. [DKV]; [HST]; [Sel]; [Va]). It
would be interesting to recast such results into the spectral form (cf. [Mc]) and to
deduce a proper analog of the Poincare map and Maslov-Morse indices.

o In connection with the last remark let us mention another class of tori known
in spectral theory. These are the phase-space invariant tori of intermediate dimensions
between 1-D (closed path) and n-D (invariant Lagrangians) studied by Voros [Vo]. He
showed the connection between “path-quantization” and “EBK-quantization”, and
derived a suitable form of EBK-rules in this context. These results are interesting, but
hardly applicable in our geometric setup. Firstly, it is not clear whether flat tori could
be lifted from b to isotropic tori in the phase-space T*(Ab). Secondly, even if this were
possible, one is not likely to get a “nice foliations” of T*(Ab) by lifted tori. In this
regard we raise yet more general problem. Given a manifold Ab with a stable (in an
apropriate sense) flat torus 4 is there a quasimode construction, based on such 47 In
other words could one construct an embedding of the flat Laplacian Ay into A 4, the
same way one does for closed path v (cf. [Co3]). If this were possible one could produce
the trace-formula based on tori, as well as asymptotic lattices of eigenvalues, rather
than arithmetic sequences.
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