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Séminaire de théorie spectrale et géométrie 

GRENOBLE 

1992-1993 (85-103) 

CLOSED GEODESICS AND FLAT TORI 
IN SPECTRAL THEORY ON SYMMETRIC SPACES 7 

David GURARIE 

Closed geodesics are known to play an important rôle in spectral 
theory of Laplacians on Riemannian manifolds Jk. They also 
contribute to spectral theory of Schrôdinger operators A + V, 
typically in the form of higher order correction to the principal 
(Laplace) eigenvalue. We give a brief survey of the classical "Shape 
of metric* and "Shape of potentiaP problems of spectral theory, and 
explore the rôle of "length spectrum" (the length of ail closed 
path/geodesics), and the related "Radon transform of V . Then we 
outline some récent progress in spécial cases: the n-sphere theory, and 
Schrôdinger operators on higher rank symmetric spaces. The latter 
case brings in new players: the flat tori. They naturally appear in 
higher rank compact symmetric spaces and play the rôle of closed 
geodesics hère. We conclude by a list of open problems. 

1. Classical spectral invariants; length spectrum and invariant Lagrangians. In 

spectral theory of Laplacian H = — A or Schrôdinger operators H = — A + V on a 

compact Riemannian manifold jtt one is interested in the connection between spectrum 

of H on one hand and the geometry of Jk,V as well as the dynamics of the underlaying 

classical hamiltonian flow of H in the phase-space, identified with the cotangent bundle 

T*(Jk). Mark Kac [Ka] asked his celebrated question "Can one hear the shape of the 

drum?" and gave some examples. Similar "shape problems" can be posed for the metric 

on Jt>, potential V, etc. The well known examples of audible geometry include 

• The classical heat/Weyl invariants, like 60 = vol(Jk)\ bx = area(dJt) ; intégral 

of curvature Kdv, etc. ([We]; [MP]; [McS]; [Gi]). The name reflects their dérivation 

via small-time asymptotic expansion of the heat-kernel, 

etH ~ t~%{b0 + bi& + b2t + . . . } , n = dim(Jlt). (1) 

• The next important example goes under the name of length spectrum, it refers 

to ail closed trajectories of the underlying classical hamiltonian flow. In the case of 

Laplacian it becomes the géodésie flow, so one talks about the length of ail closed 

geodesics on Jk. The gênerai principle states: spectrum of AM détermines the length 

spectrum {¢(7) = | 7 | } , plus some additional data, like Poincare numbers (that measure 

the "twist of the flow" along 7), and Morse indices (7(7). Precisely, ([BB]; [BT]; [Gut]; 

An expanded version of the lecture delivered at the Math. Physics seminar of ETH and 
seminar on Geometry and Spectral theory of the University of Grenoble. 
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[Ch]; [DG]; [Co3]): for any closed stable path i = £(7) there exists an almost arithmetic 

séquence of eigenvalues in specyA: 

A è a 2 p b + j : m j « i + v(7). (2) 
Hère {6 A are Poincare angles and v - Morse index along 7. There are several ways to 

establish (2). One is based on the quasi-mode construction [Co3], it effectively produces 

an embedding of space #(7)-*L 2 (M\ that "almost intertwines" operators J-J | 7 with 
1/ /77 

the Laplacian AM. Another way is based on the study of the wave-kernel Ut = e v -

the fundamental solution of the wave équation: 

uti + H[u] = S(x — y) on Jk> x R. 

It turns out that 

understood as a distribution2 on R, has singularises located inside the length spectrum 

{£(7)} of J t , including the "big singularity" at t = 0 (the latter would correspond to ail 

trivial one-point path). Precisely, x is made (expanded into the sum) of contributions of 

différent closed path {7}, X = Xo+£X7« T h e Fourier transform Xo o f t h e m a i n 

singularity has an asymptotic expansion 

XoM ~ c0//n "" 1 + cxfi
n " 2 + ... , as fi - 00, 

whose coefficients {coJCj;...} axe simply related to the Weyl (heat) invariants (0)-(2). 

The sum of nonzeros terms yield 

(x - xo>M - £ E E ] (,_ ̂ . , , , _,,,„• <3> 

Hère 7 dénotes a primitive closed classical path (geodesics), 7™ - its m11 iterate, 

«7(7) - the Morse index of 7, and P(*r) - the Poincare map along 7. We remark that 

singular terms of the type [t - «(7™)] ~ l in (3) correspond to isolated closed path 7. In 

degenerate cases (i.e. when orbits of a given period form a d-parameter family) more 

singular distributions of order —£- appear in place of (t — i) "" . 

Formula (3) extends the classical Poisson summation for the wave-kernel el * 

on the n-torus Tn, and has a noncommutative analog, the celebrated Selberg-trace 

formula on hyperbolic spaces M = H/r, Poincare half-plane modulo a discrète 

^Unitary operators Ut hâve no "trace" in the usual sensé, but integrating Ut against smooth 
compactly supported test-functions / on R, produce trace class operators \J*=ff(t)Ufdt on L (M). So 
distribution x c a" be defined via pairing (x;/) = trU*. 
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(Fuschian) subgroup T of 5L(2;IR), acting on H by fractional linear transformations [Sel]; 

[HST]; [Me]. It is worth to note, however, that in classical cases (Poisson. Selberg), 

asymptotic relation (3) becomes exact. 

• Our next example exhibits higher-D géométrie structures that hâve spectral 

content. Those are invariant Lagrangians (tori) in the phase-space T*(Jtt>), preserved by 

the hamiltonian flow of H. One assumes that T*(Jl>) is foliated into the n-parameter 

family of such Lagrangian A(c) = A(cx;...cn), those could be for instance, the joint level 

sets of n Poisson commuting intégrais {/,-(x;p) = c,-}. 

To quantize family {^l(c)} one picks a system of fundamental cycles 

{7j(c):l < j < n - l } in each A(c) and writes the generalized Bom-Sommerfeld (EBK)-

quantization rules ([Ke]; [MF]; [Gut]): 

Tj(c)=§ p-dx = T(2rnj + \v(~fj)) (4) 

Hère numbers {mA vary over the integer lattice Z+ and ^(...) dénotes the 

Maslov index of yl, evaluated along the cycle. Solving system (4) we get a quantized set 

of Lagrangians {Am = A(c(m)):m = (ni1;„.mn_1)}, hence a quantized séquence (labeled 

by lattice points m e Z+) of eigenvalues of the hamiltonian H = fc(x;ô), 

A m «fc | A . (5) 

EKB-quantization based on invariant Lagrangian provides more rich spectral 

structure compared to closed path, but is limited in scope to essentially integrable 

classical hamiltonian. 

2. Perturbation problems. The best studied class of perturbation problems are 

one-dimensional regular Sturm-Liouville (S-L) operators H = — d2 + V(x) on [0;1], with 

any kind of boundary conditions: two-point; periodic; Floquet, etc. Such operators hâve 

simple (multiplicity free) eigenvalues {A .̂}, that admit an asymptotics expansion [Bo], 

Xk = (irk)2 + 60 + bxk"2+ ..., as fc—oo. (6) 

Hère 6Q = Vdx, 6a = (V — b^2dx, and higher {bA involve certain polynomial 

expressions in V and its derivatives. The correspondence V—>spec(Hv) is highly 

nonunique, there are typically large (oo-D) isospectral classes both in the 

periodic/Floquet and the "2-point boundary" case ([IMT]; [PT]). So inverse spectral 
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problem requires an infinité auxiliary set of data, like the higher KdV-parameters or 

norming constants. 

The multidimensional Schrôdinger problems are believed to be spectrally rigid in 

the sensé that their isospectral classes, Iso(V), consist of small (finite-dimensional) 

families obtained by natural (géométrie) symmetries of the Laplacian, i.e. isometries of 

Jk, rather than hidden KdV-type symmetries. This spectral rigidity hypothesis was 

confirmed in a number of cases, the foremost is the case of negatively curved manifolds. 

It was shown (under some additional technical conditions [GK]) that potential V on a 

hyperbolic manifold Jk> is in fact uniquely determined by spec(#y), negatively curved 

manifolds hâve typically no continuous internai symmetries. 

Another example is the flat torus T n , whose symmetries are made of ail 

translations and reflections. It was shown that generic potentials3 V on T n are also 

spectrally rigid ([ERT]; [MN]). The case of positively curved (and highly symmetric) n-

sphere proved to be more difficult. The gênerai rigidity hypothesis remains open, but 

there is a number partial results ([Wei]; [Gui]; [Co]; [Ur]; [Wi]; [Gur4-5]), that we shall 

now discuss. 

To proceed we make a gênerai comment on the rôle of closed path for 

perturbation problems: they typically enter spectral asymptotics in the form of intégrais 

of V along 7, Vds (Radon transform), or certain functionals of V. Most known 

results starting from the 1-D Borg formula (6) to the multi-D flat (Tn), hyperbolic or 

spherical cases involve such "Radon transforms" in that or other form. The latter case 

will be illustrated in the next section. 

3. The n-sphere theory. The n-sphere Laplacian has regular distributed and 

highly degenerate spectrum: 

{A* = fc(fc+n- 1) = (k+p)2-p2:fc=0;l;...}, p = 2-y± 

the multiplicity dk = d(Afc) increasing with k as 0(kn "" l). The degeneracy results from 

the underlying rotational symmetry SO(n+l). Each eigensubspace %k C L2(S) is 

invariant under SO(n + 1 ) and defines an irreducible représentation ir . Potential V 

breaks the rotational symmetry of the problem, so spec(Hy) splits into clusters of 

simple (less degenerate) eigenvalues Afc = {Afcm = Afc + //fcm:m = 1;...^,}. The clusters 
_— 

°Of course, spécial potentials, like V = V1(ar1) +... -h Vn(xn) may possess "large" (infinité) iso-

spectral classes, obtained by the KdV-flows applied to each 1-D component {VJ(XJ)}. 
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are asymptotically well localized. Namely, the cluster size, 

I A « _ J 0(1), for even/generic V 
k " \ 0 ( f c - 2 ) , f o r o d d V 

while the distance between neighboring Ak increases in proportion to k [Gui2]. So one 

looks for spectral invariants, associated with distribution of shifts within clusters. 

Such distribution is naturally described by cluster-measures, 

k m 
Weinstein [Wei] studied asymptotics of measures {duk} and proved that 

séquence {dvk} converges to a continuous measure /50(A)dA on R. The limiting dcnsity 

(not surprising) turned out to be the distribution function of the Radon transfonn V. So 

for any test function / on R one has 

(/ I Po) = } foVdS, (7) 
intégration over the space O of closed geodesics (great circles)4 on Sn (fig.l). Moreover, 

séquence {dvk} can be expanded in powers of k "" *, similar to Borg's expansion (7), 

àuk - (3o + k-101 + ... (8) 

Coefficients {/3O;0V..} axe certain distributions on R depending on V. Weinstein 

named them band-invariants, and calculated /30. The higher band-in variant s involve 

complicated expressions of potential and its derivatives, only two of them {/?iî/?2} hâve 

been computed explicitly [Url-2], [Gur4]. 

Fig.l: Closed geodesics on Sn are great 
circles 7 = T ( Z ; 0 through point x m the 
direction ¢. 

differs from the hyperbolic or flat torus cases. The 

structures, e.g. a homogeneous space of S0(n+1), complex projective variety [Gui]; [Ur]. Clearly, the 
entire géodésie flow on Sn is periodic of period 2T. 
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Turning to the inverse problem the band invariants provide some useful 

information, in particular they allow to prove spectral rigidity for spécial classes of 

potentials (low degree spherical harmonies) on S2 [Gui]. Their use however is limited by 

the fact that {/3j} describe distributions of values of the Radon (and related) transforms. 

rather than the transform itself. The latter could hâve been easily inverted to recover 

potential V, but in gênerai one cannot recover a function (even single-variable) from the 

distribution of its values. 

In récent papers [Gur2-4] we studied the class of zonal (axisymmetric) potentials 

on Sn , i.e. functions {V} invariant under the subgroup S0(n) of rotations about the 

"north pôle". Such V clearly dépend on a single variable angle 8 between point on S" 

and the vertical axis (see fig.2). The corresponding Schrôdinger operators possess an 

auxiliary SO(n)-symmetry. On S2 it is generated by the 2-component of the augular 

momentum operator J = idg, while on Sn the rôle of J is played either by the Lie 

algebra so(n), or after a suitable "symmetry réduction" by a single operator 

J=yj—An_l - the lower-dimensional Laplacian on S"" 1 . Such hamiltonians are 

integrable in the Liouville sensé (algebra so(n) générâtes n — 1 intégrais Poisson-

commuting with classical hamiltonian of H. Those could be naturally quantized to 

produce a commutative family of operators {Ji\~*Jn_i) commuting with H. So one can 

study the joint spectral décomposition of H and { J J , or H and J . Thus spectral shifts 

{//fcm} of the fc-th cluster acquire an additional (bigraded) structure, index m labeling 

the angular momentum of the fc-th eigenfunction ^ m , 

Wfcm] = (h+PkmWk fcm (9) 
cm 

Fig.2: Zonal axisymmetric potentials 
dépend only on angle 6 between tlie point 
on the sphère and the vertical axis. Their 
Radon transform is also a single variable 
function of the height r of the north polc N 
of a great circle 7. 

Zonal potentials allow to improve the Weinstein's resuit (7) by replacing 
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asymptotics of cluster-measures {di/k} by asymptotics of individual spectral shifts 

{/'fcnJ' ^ e m a * n resuit [Gur4] states, 

Theorem 1: Spectral shifts {fi^m} °f the joint H^J-eigenvalue problem (9) admit an 

asymptotic expansion, 

The coefficients a(x);6(x);c(x) are computed explicitly in terms of certain 

transforms of V (its even and odd parts V = V€V + Vod) on [0;1]. Namely, the 

reduced Radon transform5 M, J ^ 
V i — TÀ 

K:/(*W(r) = | f ) 1 , ) , ¾ . 
0 

the Gegenbauer-Legendre operator (reduced Laplacian) 

and operator G = z^-, Precisely, 

*(r) = *(Vev) = t/cv(r); 

6(r)=-lKa(Vcl>); 

c(r) = ^3l{22 + 2(n + l)2}(Vcv) + 

+ W(Vev
2 + VJ) - (Wev)

2} - ^ 4 - ^ K{^(yev
2 + VJ)}. 

In spécial cases of even [Gur2] and odd [Gur3] zonal potentials V on S2, \ve get 

[V(m) + 0(fc-») , even V, 

Function t^(x) is obtained by transform i(W - — Ô ^ ® ) applied to V d
2. 

4 j — r oa 

Theorem 1 provides a unique and explicit solution of the inverse problem for the 

joint (H, J)-spectrum. It also yields local spectral rigidity for generic zonal potential on 

5 n , via rigidity of almost arithmetic séquences. The détails are given in [Gur2-4]. 

Remark: Theorem 1 can be interpreted in terms of semiclassical quantization (4) 

of an integrable hamiltonian H. It gives the effect of perturbation V on spectral shifts 

{/ij.m} of H y in terms of two commuting intégrais: A = y/ — A and J = J — A i - l ( o n 

°We remark that zonal functions {/(x)}, as well as their Radon transforms {/(r)}, dépend on 
a single variable x € [ - 1; 1] of / that runs along the symmetry axis, while variable r of / mcasurcs the 
x-coordinate of the "north pôle" of the great circle 7, i.e. /(7) = f(r(y)). 
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S , J = i ô A in the form 

V€ff*a(J/A) + A-1b(J/A) + A-2c(J/A) + ..., (11) 

where a = Radon(V), b = ... etc. When both operators A and J are quantized by the 

EBK-rules (4) to their classical levels: Acj = fc, J c / = m, on a family of 2-D (reduced) 

invariant tori then (10) follows from (11). 

4. Averaging method. We shall briefly outline some basic methods employed in 

the n-sphere theory. They involve a suitable averaging procédure [Wei], [Gui], [Ur], 

Symbolic calculi on Sn [Ur], and (in the zonal case) Zonal réduction [Gur2-4]. One 

usually works with operators y/ — A and y/H, those are more convenient from the view-

point of symbolic calculus6 than A and H. Precisely, we take operator 

A = y/-A + (*f±)2 - (Syl) t and write HV = (A + B)\ so B * \Vfy/-ll + ... One of 

the main obstacles in diagonalizing operators like H y is that Laplacian A and 

perturbation V do not commute. Weinstein's remedy was to average B with a imitary 

group générâted by A. One conjugates B 

B(t) = e-itABeitA, 

and defines the average operator 
27T 

B = ±\B(t)dt. (12) 

Clearly, B commutes with A, and one can show that A + B and A+B are 

"almost unitarily équivalent", 

U-HA + B)U = A + B + R, 
the remainder R being small relative to A, its modulus estimât ed by 

\R\={RR*$<CGnstA~z. 

As a conséquence, spectral shifts {Hkm} of A + B are approximated by the 

averaged shifts {jl^m} of A + B, equal to eigenvalues of S , 

l^m-Pftml ^ Constfc"3 . 

Asymptotic distribution of the latter is then computed using the symbolic 

calculus on Sn (so called Szegô limit Theorem [Gui]). To get /30 one takes a test 

function / on R paired with cluster-measures {di/fc}, and passes to the limit &—>oo, 

à— 

Taking square-roots of Laplacians, Schrôdinger operators is a convenient technical device that 
allows to reduce many symbolic (semiclassical) manipulations with functions { /(4)} , from the entire 
unbounded phase-space T"(Jk) to its compact part the cosphere bundle S*(Jk). 
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{f-^^f^J^l^^iLl^f^bolB) dS. 
Symbol of the conjugate operator (r/>do) B(t) is obtained by composing 

aB = V(:r)/2|£| with the hamiltonian (géodésie) flow, exp(tE), of "symbolA" = |£|. Hère 

E dénotes the hamiltonian vector field of "symbol A". This yields symbol of the average 

operator B, 27r 

o 

and the latter is nothing but the Radon transform V (7), evaluated on a closed path 

(great circle) 7 = 7 . , passing through x G Sn in the direction £ € Tx*. Thus we get the 

fîrst band-invariant /30 in terms of the Radon transform V . 

The above argument proves Weinstein's Theorem. It requires further élaboration 

and considérable effort to prove Theorem 1 (see [Gur2-4]). Thèse results demonstrate 

some essential features of the n-sphere Schrôdinger theory, that relies heavily on 

spherical symmetries of the problem and periodicity, both on the classical level 

(géodésie flow), and the quantum level (operator A = y/—A with periodic spectrum). 

Both features, symmetry and periodicity persist, in any rank-one symmetric space, so 

ail the above results can be extended to such Jk, as well as more gênerai Zoll manifolds 

[Wei], [Ku]. However, the higher rank spaces pose a new and very différent situation. 

They clearly lack periodicity, both the classical and quantum alike: the eigenvalues of 

y/A + Const are no more integers, and a typical geodesics does not close, but rather 

wrap up densely around a flat tori. Although such space could still hâve a fair number 

of closed path the dynamics would be dominated by aperiodic 7. The lack of periodicity 

requires a modification of the basic averaging techniques: the Weinstein averages (12) 

should be replaced by the ergodic averages, 

JsT = lim< Br = ^ B{t)dt >, as T—*oo. 

In [Gur5] we developed such multiparameter averaging procédure in the context 

of multi-D anharmonic oscillators on Rn. Thèse methods proved to be applicable also to 

Schrôdinger operators on symmetric spaces. 

5. Symmetric spaces. Symmetric spaces jtt> are natural generalizations of three 

basic models in geometry: the flat Rn, spherical Sn and hyperbolic Hn. Ail three spaces 

possess large symmetry groups G of isometries. Those are the Euclidian motion group 
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En = Un t> SO(n) for Rn, the orthogonal group G = SO(n + l) for Sn , and pseudo-

orthogonal (Lorentz) G = SO(l;n) for Hn. Symmetries act transitively on each of three 

spaces, so Jk = K\G (G modulo stabilizer K of some x0 € Jk). Furthermore, any pair of 

points {x,y} is conjugated to any other equidistant pair {x'\y'} by an élément of G. 

Hence the only relevant parameter of any G-invariant operator on such space is the 

distance d(a:;y). Another chaxacterization of ail 3 spaces A'\<? is that stabilizer K acts 

transitively on the géodésie sphère Sr(x0) = {y: d(x0; y) - r}, centered at xQ. 

Three basic geometries Rn; Sn; Hn are examples of rank-one symmetric spaces. In 

gênerai, symmetric spaces Jk is defined as a quotient K\G of a semisimple Lie group G, 

modulo its maximal compact subgroup A'. Hère we are mostly interested in compact 

symmetric spaces, i.e. quotients of compact Lie groups G. It is known that such group G 

(and its Lie algebra ©) has an involutive automorphism 6 (02 = 1), that stabilizes 

subgroup K = {u 6 G:6{u)=u}. Such 6 splits Lie algebra © into the direct (orthogonal) 

sum ft © $ , the subalgebra A of K and a subspace % The latter could be identified 

with the tangent space of JH> at x0={A'}. Furthermore, 6 R ~ 7, 9 Ç ~ - J, so the 

resulting Lie brackets between the ft and îp -components of © become 

[ft;ft] C ft; [ft;Ç] C ÎP; [$;$] C ft. 

Space îp contains a maximal abelian (Cartan) subalgebras 51 a Rr, whose 

dimension r = dimSI détermines the rank of Ji. The image of ïï under the exponential 

map ®-»G, forms a maximal geodesically flat torus 7 = expffl m Jr in Jtl>. Geometrically 

one could view space Jk in the following way: as above group G acts transitively on Jt , 

so each point x is carried into any other point, but this is no more the case with pairs of 

equidistant points, or the géodésie sphère at x0. The latter is not covered by stabilizer 

AT, but rather is foliated into the r-parameter family of A'-orbits. Thèse r-radii 

(r = rankJt) play the rôle of a single géodésie distance d(x;y) in the rank-one case. 

Let us remark that space Or of ail flat r-tori {7} of a compact symmetric space 

is itself a smooth manifold, whose dimension dépends on dimG and rank. Group G acts 

on Or, turning it into a homogeneous space A'0\G, K0 - stabilizer of SI in G. 

Symmetric spaces (both compact and non-compact) were completely classified 

by Cartan (see for instance [He]; [Gur6]). Hère we bring the basic examples of 

irreducible gîobally symmetric compact spaces: 

(i) SU(n)/SO(n) 6:X^X (complex conjugation) r = n - 1 
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(*») SU(2n)/Sp(n) 6{X) = JnXJn ~ \ where Jn is r = n - 1 

symplectic matrix f , J in C2n 

(ni)SU(p+q)/S(U(p) x U(q)) 6(X) = IpqXIpq, where J p 9 is r = min(p;q) 

the matrix of the indefinite (7?;ç)-form: 
P P+9 

î P+i 

(iv) SO(p+q)/SO(p) x SOfa) 0( X) = IpqXIpq, same 7p , as r = rmn(p; g) 

above in Rp+«; 

(v) S0(2n)/U(n) 0{X) = J n X J n " 1 r = [§] 

(vi) Sp(n)/(/(7i) *(X) = X = JnAVn " 1 r = n. 

Those along with a few exceptional cases exhaust the list. More gênerai 

(reducible) spaces can be decomposed into products of irreducibles Jkx x Jk2 x ... The 

simplest example of the sort is quotient SO(4)/SO(2) x S0(2) ~ {S2 x 52)/Z2 - the 

product of two sphères. This example is exceptional among orthogonal types (iv), as ail 

others are irreducible. 

Spectra of Laplacians on symmetric spaces are well known: 

Aa = (a+p)2 - p2, 

where a varies over the so called highest weight lattice A = {a = a 0 + YlrniOLï^rni £ ^+} 

in SI. The latter is spanned by a few basic weights {a0} and ail linear intégral 

combinations of positive roots { a j of © (weights of the adjoint action adj^y) = [-X"; V]) 

that lie in SI. Weight p = \Y,ai represents the half sum of ail positive roots taken with 

their multiplicities. Let us also mention that ail highest weights lie in the Weyl chamber 

a sector in 51 made of the intersection of half-spaces r+{aA = {X:{a • | X) > 0}, which 

dépends on the choice of the positive root system in SI. 

We shall illustrate the foregoing with 2 examples: 

1) The n-sphere: £P ~ SO(n+l)/SO(n). Hère subalgebra Si cz sà(n), subspace ?P 

consists of matrices: X=Xb=( °T £) with columnar vector 6 G R"; isotropy subgroup 

K = SO(n) acts on Ç by rotations: u ~" 1 Xtfi = X ,^y Maximal abelian subalgebras 

SI C $ are 1-dimensional (rank 1), and the exponential image of 21 becomes a closed 

geodesics (great circle 7) in S". Lattice A C i"+ (half-line) consists of integers k, and the 

basic positive root {1} has multiplicity n — 1, hence p n 7 *. 
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The fc-th eigen of the laplacian Asn, Afc = k(k+n-l) - {k+pf-p2, and the 

eigensubspace %k (spherical harmonies of degree k) coincides with a x-irrcducible 

component of the regular représentation R of G = SO(n+l) on Sn of weight 

fc~(fc;0;0;...). 

2) Space SU(n)/SO(n). Hère the Cartan Ç-component is realized by real 

symmetric matrices, 

Z = A' + iY, X € so(n) = ft, Y € Symn = $ . 

Fig.3. Stf(3) weight lattice (marked points) 
is obtained from 2 basic weights: 

7 l = ( l ; - ! ; -£ ) and 72 = ( ^ - 1 ) 
by adding ail intégral combinations of two 
basic roots, 

aa = (1; - 1;0) and a2 = (0;1; - 1). 
So any a in A is equal to 

a = 7 1 2 + mjOj + m 2 û 2 . 
The half-sum of positive roots p coincides 
with highest positive root 

a 3 = a l + °2-

Subgroup K = SO(n) acts on $ by conjugation: X-*u ~ 1Xu\ Cartan subalgebra 

31 C $ consists of ail real diagonal matrices, ?! ~ Rn ~ * (hence rank = n - 1). The image 

of any Ul under the exponential map exp:$—. J becomes a geodesically flat torus in J k 

7 = exp(SI) ~ T n ~ *. Positive roots in SI = §("!$ - Rn ~ * are of the form 

Htj= diag(0;...1 • . - 1 ;...); on the i-th and j-th place, 

and the basis of positive roots cou. " Hj = diag(...l; -1 ; . . . ) . The Weyl chamber is a 

sector of angle ? on the right of the vertical axis (fig.3). Highest weights are obtained 

from two basic weights ( l ; - ? ; - ? ) and (};};-1) by adding ail integer combinations of 

two basic roots (see fig.3): 

i 
The half sum of positive roots: \p = ^ n - l ; n - 3 ; . . . ; - n + 1 ) , while the inner 

product (Killing form), 

(H; H') = tr(adHad ,) = £ (** " *j)( V " hj)-
i<j 

So the eigenvalues of A, 

i<j 
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where k{j = (fcf - k{ _ j) - {kj - kj _ x); ^ = p{ - ^ = 2(j - î). 

6, Schrôdinger operators on symmetric spaces. Turning to Schrôdinger operators 

on symmetric spaces, our first goal is to find the proper analog of the band-invariant /30. 

As in the n-sphere theory (§3) spectrum of H = -A + V consists of clusters 

{Xk + pkm:l <m <d(a)}, resulting from splitting degenerate eigenvalues of A. One 

would like label a to vary over the lattice points a G f + in the Weyl chamber of SI. 

However, clusters {AQ} of différent weights {a} may overlap, if eigenvalue Àa = À^ are 

equal. So we need to combine clusters {AQ} corresponding to equal eigenvalues 

{a:Xa = k2} into larger super-clusters Ak. Hère label k = ka = yj \ a + p \ 2 — p2 is a real 

number. Another apparent diffîculty is that the distances between eigenvalues of A 

need not grow as a—»oo, so cluster (or super-clusters) may overlap even for large 

distinct a. This would limit our results to small (in norm) perturbations V. 

We define a séquence of cluster-measures labeled by reals k = ka to be 
d"* = ̂ S ^ - ^ „ , ) . t") 

where d(k) sums multiplicities {da} of ail a in a super-cluster k (i.e. Xa = k2). 

One are interested in the asymptotic distribution of measures {dv^}, when 

k—>oo. Guillemin [Gui3] studied a similar problem for asymptotic distribution of 

"normalized" weight diagrams: E a = { - a < /3 < a} of irreducible représentations' rrQ, 

associated to weights a in r + . He introduced a séquence of discrète distribution-

measures for normalized weight-diagrams £' = {-j—ri/3 G S a } , 

d"° = afe ^ *(A " "R*1 on "'a € œ<+ (14) 

and proved the following ^ 

Szegô-type Theorem (Guillemin): Consider a séquence of normalized vieights 

a. / | a. | —>a0 in the Cartan subalgebra § C ® , the corresponding représentation 

spaces Yk = Y(ak) C L2(G) with highest weights {afc}, and orthogonal projections 

Pk:L
2-+Vk. Then 

*We recall that any irreducible irQ is determined by a finite set of its weights {/?} (linear 
functionals on §), obtained by restricting representation-operators {*•"//} on ail Cartan éléments 
{H € §}, 7ra | § ~ ® (/? | H). One of them a (highest) uniquely détermines îra, ail other {/?} in the 
weight diagram ;4a^are squeezed between -a and a, and transformed one into the other by Weyl 
éléments, a finite group generated by ail (reflectional) symmetries of the root system of the pair in 
Ses. 
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(i) Séquence of measures dvk (14) converges to a continuous distribution /30, 

supported on the weight-diagram of a. 

(ii) Distribution /30 coincides with a projection of the natural G-invariant measure 

d* on the co-adjoint orbit O0 = O(a0) = {&dg(a0):g € G}, through a0 € §, 

di/ajb-»d/?(A) = proj^[d0(...)], as fc->oo, (15) 

where projç= stands for the natural projection: ©—•£), determined by the Killing 

inner product on Lie algebra ©. 

(iii) For any 0-th order pseudo-differential operator B on G, séquence 

tr(Pf?k)^ f , symb(B)do(x;0. 
d(<*) J 0 ( a ) U 

Fig.4 shows a weight diagram of any 
V f - ï x i x x ^ i ^ positive weight a in the Weyl chamber 

(lightly shaded sector) of, Lie algebra 
© = 5u(3). The same figure doser ibes 
restricted weights of symmetric space 
Sl/(3)/SO(3). The G-orbit of élément a in 
su(3) projects down onto its weight-
diagram (the dark shaded région O = i ? a ) , 
the convex hull of a, reflected by ail 
éléments of the Weyl group W of su(3). 

Let us notice that a G-orbit O C ©, passing through a, projects onto the région 

in ô , bounded by the weight-diagram Aa (shaded région fi in fig.4), and gives certain 

density on i?. A similar resuit holds for symmetric spaces Jfb = G/A', but this time one 

takes restricted weights: aG9IC?PnS> ^ d a G-orbit O in the cotangent bundle 

T*(M), naturally embedded in ©. 

As a simple example illustration of Guillemin's Theorem we take the 2-sphère 

S2 ~ SO(3)/SO(2). Hère a = k - integer, its weight-diagram {/3 = m} coincides with 

interval {—A: < m < A:}, the diagram measures, 

-fc 

clearly converges to the uniform (Lebesgue) distribution dx on [ —1;1], which is easily 

verified to coïncide with the projection of the invariant measure {dS | Q) on orbit 



Closed geodesics and flat tori in spectral theory on symmetric spaces 99 

O - S2 C S*(S2). 

Our main objective are spectral clusters of Schrôdinger operators on jtl and the 

corresponding cluster-measures {du}. We shall establish the analogue of (15), where the 

rôle of invariant measure dç* will be played by a generalized Radon transform of V. The 

latter is defined via intégration of V over flat tori in -41, 

V ( 7 ) = f Vd'S. 
7 

Precisely, we take any séquence of cluster labels {k = k —*oo}, and consider the 

limiting set of ail normalized séquences of weights {a.-}, that belong to {k •} (in the 

sensé that Àa . = k -2), 
S = £ ( ¾ } ) = {a0 = l ima,/ | ttj | :<*j € kj}. 

Now we take a G-invariant set O(S), made up of ail orbits {O(a0):a0 G S} . 

Theorem 2: Given an increasing séquence {kA of cluster-labels, the séquence of the 

corresponding cluster-measures dvk converges to a continuous limit, 

dvk —• /3(A)dÀ; as fc—>oo. 

JVie resulting density /3(À) is eçwa/ <o ifee distribution function of the generalized 

Radon transform V (y) restricted on the G-invariant set 8 O(E) C 5*(^t) . 

Theorem 2 gives an improved and corrected version of the main resuit of [Gur7] 

(Theorem 2). The argument outlined in [Gur7] remains valid, so we refer to the paper 

for further détails. Hère we just mention that the method of [Gur7] exploits ergodic 

averaging of [Gur5] (a modification of the Weinstein's averaging for non-periodic 

hamiltonians), as well as Guillemin's Szego-type Theorem. 

Concluding remarks. 

• Theorem 2 represents a fîrst step in a long range program of extending the n-

sphere Schrôdinger theory to higher rank spaces. It shows that the rôle of closed 

geodesics and the related Radon transform would be played by the flat tori. Next steps 

should include dérivation of higher band-invariants {/3 •} (cf. [Ur]), and the zonal theory 

along the lines of [Gur2-4]. Let us remark that symmetric spaces possess the natural 

analog of zonal potentials, the /^-invariant functions on Jtb = A'\G. Thèse are known to 

Let us remark an important différence between rank-one and higher ranks: the former hâve a 
single G-orbit to cover the entire co-sphere bundle 5*(Jt) , while the latter hâve continuous families of 
such orbits. 
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play an important rôle in the représentation theory of semisimple groups. 

• There is a number of related problems for Laplacians on locally-symmetric 

hyperbolic spaces Jk = U/T. Hère H = A'\G dénotes a quotient of a noncompact 

semisimple Lie group, modulo the maximal compact subgroup, and J1 - a uniform 

lattice in G, so both quotients r\G and r\U are compact. The classical examples is the 

Poincare plane H = SL2/SO(2), modulo a Fuschian subgroup I \ The connection between 

spectrum of the Laplacian and the closed geodesics is well known for Riemann surfaces, 

as a conséquence of the Selberg-trace formula (see [Sel];[Me]). We conjecture, that flat 

tori would play the rôle of closed geodesics and would contribute "asymptotic lattices" 

of eigenvalues to spec(^jM ). Such trace-formula should be connected in some to the 

known higher-rank versions of "Selberg trace formula" (cf. [DKV]; [HST]; [Sel]; [Va]). It 

would be interesting to recast such results into the spectral form (cf. [Me]) and to 

deduce a proper analog of the Poincare map and Maslov-Morse indices. 

• In connection with the last remark let us mention another class of tori known 

in spectral theory. Thèse are the phase-space invariant tori of intermediate dimensions 

between 1-D (closed path) and n-D (invariant Lagrangians) studied by Voros [Vo]. He 

showed the connection between "path-quantization" and "EBK-quantization", and 

derived a suitable form of EBK-rules in this context. Thèse results are interesting, but 

hardly applicable in our géométrie setup. Firstly, it is not clear whether flat tori could 

be lifted from Jk> to isotropic tori in the phase-space T*( J l ) . Secondly, even if this were 

possible, one is not likely to get a "nice foliations" of T*(Jk) by lifted tori. In this 

regard we raise yet more gênerai problem. Given a manifold Jk with a stable (in an 

apropriate sensé) flat torus 7 is there a quasimode construction, based on such 7? In 

other words could one construct an embedding of the flat Laplacian A^ into Aj^, the 

saine way one does for closed path 7 (cf. [Co3]). If this were possible one could produce 

the trace-formula based on tori, as well as asymptotic lattices of eigenvalues, rather 

than arithmetic séquences. 
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