This report is based on a talk given by the author in the Laurent Schwartz seminar at IHÉS, Paris, on February 16, 2016. This involves joint works with Michael Christ and Heping Liu [CLZ16a, CLZ16b, LZ15]. We review several sharp Hardy-Littlewood-Sobolev-type inequalities (HLS) on I-type groups (rank one), which is a special class of H-type groups, using the symmetrization-free method of Frank and Lieb, who proved the sharp HLS on the Heisenberg group in a seminal paper [FL12b]. We give the sharp HLS both on the compact and noncompact pictures. The “unique” extremal function, as expected, can only be constant function on the sphere. Their dual form, a sharp conformally invariant inequality involving an intertwining operator (“fractional subLaplacian”), and the right endpoint case, a Log-Sobolev inequality, are also obtained. Besides, some stability and dual type improvements are also discussed. A positivity-type restriction on the singular exponent is required in the cases with centres of high dimensions, which bring extra difficulty. The conformal symmetry of the inequalities, zero center-mass technique, estimates involving meticulous computation of eigenvalues of singular kernels, compactness and local stability play a critical role in the argument.
@article{SLSEDP_2015-2016____A11_0, author = {An Zhang}, title = {Sharp {Hardy-Littlewood-Sobolev} inequalities on~a~class of {H-type} groups}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:11}, pages = {1--8}, publisher = {Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique}, year = {2015-2016}, doi = {10.5802/slsedp.98}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.98/} }
TY - JOUR AU - An Zhang TI - Sharp Hardy-Littlewood-Sobolev inequalities on a class of H-type groups JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:11 PY - 2015-2016 SP - 1 EP - 8 PB - Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.98/ DO - 10.5802/slsedp.98 LA - en ID - SLSEDP_2015-2016____A11_0 ER -
%0 Journal Article %A An Zhang %T Sharp Hardy-Littlewood-Sobolev inequalities on a class of H-type groups %J Séminaire Laurent Schwartz — EDP et applications %Z talk:11 %D 2015-2016 %P 1-8 %I Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.98/ %R 10.5802/slsedp.98 %G en %F SLSEDP_2015-2016____A11_0
An Zhang. Sharp Hardy-Littlewood-Sobolev inequalities on a class of H-type groups. Séminaire Laurent Schwartz — EDP et applications (2015-2016), Talk no. 11, 8 p. doi : 10.5802/slsedp.98. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.98/
[Bec93] William Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2) 138 (1993), no. 1, 213–242.
[Bec97] —, Logarithmic Sobolev inequalities and the existence of singular integrals, Forum Math. 9 (1997), no. 3, 303–323.
[BFM13] Thomas P. Branson, Luigi Fontana, and Carlo Morpurgo, Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere, Ann. of Math. (2) 177 (2013), no. 1, 1–52.
[CFW13] Shibing Chen, Rupert L. Frank, and Tobias Weth, Remainder terms in the fractional Sobolev inequality, Indiana Univ. Math. J. 62 (2013), no. 4, 1381–1397.
[CL90] Eric A. Carlen and Michael Loss, Extremals of functionals with competing symmetries, J. Funct. Anal. 88 (1990), no. 2, 437–456.
[CLZ16a] Michael Christ, Heping Liu, and An Zhang, Sharp Hardy-Littlewood-Sobolev inequalities on quaternionic Heisenberg groups, Nonlinear Anal. 130 (2016), 361–395.
[CLZ16b] —, Sharp Hardy-Littlewood-Sobolev inequalities on the octonionic Heisenberg group, Calc. Var. Partial Differential Equations 55 (2016), no. 1, Art. 11, 18.
[CY87] Sun-Yung Alice Chang and Paul C. Yang, Prescribing Gaussian curvature on , Acta Math. 159 (1987), no. 3-4, 215–259.
[CY95] Sun-Yung A. Chang and Paul C. Yang, Extremal metrics of zeta function determinants on -manifolds, Ann. of Math. (2) 142 (1995), no. 1, 171–212.
[DJ14] Jean Dolbeault and Gaspard Jankowiak, Sobolev and Hardy-Littlewood-Sobolev inequalities, J. Differential Equations 257 (2014), no. 6, 1689–1720.
[FL10] Rupert L. Frank and Elliott H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations 39 (2010), no. 1-2, 85–99.
[FL12a] —, A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality, Spectral theory, function spaces and inequalities, Oper. Theory Adv. Appl., vol. 219, Birkhäuser/Springer Basel AG, Basel, 2012, pp. 55–67.
[FL12b] —, Sharp constants in several inequalities on the Heisenberg group, Ann. of Math. (2) 176 (2012), no. 1, 349–381.
[GV01] Nicola Garofalo and Dimiter Vassilev, Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J. 106 (2001), no. 3, 411–448.
[Her70] Joseph Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogènes, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1645–A1648.
[IMV10] Stefan Ivanov, Ivan Minchev, and Dimiter Vassilev, Extremals for the Sobolev inequality on the seven-dimensional quaternionic Heisenberg group and the quaternionic contact Yamabe problem, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 4, 1041–1067.
[IMV12] —, The optimal constant in the Folland-Stein inequality on the quaternionic Heisenberg group, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), no. 3, 635–652.
[JH14] G. Jankowiak and V. Hoang Nguyen, Fractional Sobolev and Hardy-Littlewood-Sobolev inequalities, , 2014. | arXiv
[JL88] David Jerison and John M. Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc. 1 (1988), no. 1, 1–13.
[Lie83] Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349–374.
[LZ15] HePing Liu and An Zhang, Remainder terms for several inequalities on some groups of Heisenberg-type, Sci. China Math. 58 (2015), no. 12, 2565–2580.
Cited by Sources: