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SHARP HARDY-LITTLEWOOD-SOBOLEV INEQUALITIES
ON A CLASS OF H-TYPE GROUPS

AN ZHANG

Abstract. This report is based on a talk given by the author in the Lau-
rent Schwartz seminar at IHÉS, Paris, on February 16, 2016. This involves
joint works with Michael Christ and Heping Liu [CLZ16a, CLZ16b, LZ15]. We
review several sharp Hardy-Littlewood-Sobolev-type inequalities (HLS) on I-
type groups (rank one), which is a special class of H-type groups, using the
symmetrization-free method of Frank and Lieb, who proved the sharp HLS
on the Heisenberg group in a seminal paper [FL12b]. We give the sharp HLS
both on the compact and noncompact pictures. The “unique” extremal func-
tion, as expected, can only be constant function on the sphere. Their dual
form, a sharp conformally invariant inequality involving an intertwining oper-
ator (“fractional subLaplacian”), and the right endpoint case, a Log-Sobolev
inequality, are also obtained. Besides, some stability and dual type improve-
ments are also discussed. A positivity-type restriction on the singular exponent
is required in the cases with centres of high dimensions, which bring extra diffi-
culty. The conformal symmetry of the inequalities, zero center-mass technique,
estimates involving meticulous computation of eigenvalues of singular kernels,
compactness and local stability play a critical role in the argument.

1. Introduction

Sharp constants and extremal functions, called extremizers, for important inequal-
ities have been studied since many years ago. It has been a general hot topic in
analysis, geometry, probability, PDE and quantum field theory. They play an im-
portant role because they almost always contain or reveal profound geometric and
probabilistic information of the underlying space, manifold or group. Vast beautiful
literature has been done on this subject. Despite rich profound results in the frame-
work of Riemannian geometry, the problem in the sub-Riemannian world is more
interesting, but far away from being absolutely understood while some conclusive
results have been obtained recently. In this report, we will discuss some inequalities
of HLS type on I-type groups, the nilpotent part in the Iwasawa decompostion of
rank one semisimple Lie groups. For simplicity, we will not give the explicit sharp
constants, usually the spectral gap of related operators, for which the interested
readers can find in the references.

In the seminal paper [Lie83], Lieb obtained the sharp HLS on Rn and Sn with all
extremizers identified: for singular exponent 0 < λ < n,

∫∫

(Rn)2

f(x)f(y)
|x− y|λ dxdy ≤ CRn

n,λ‖f‖p‖g‖p, p = 2n
2n− λ .

A compactness and rearrangement argument play a crucial role, which become
a standard method later for related variational problems. A unified competing
symmetry method for the existence and extremizers identification was given by
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Carlen and Loss [CL90]. They constructed a special strong limit using alternatively
the conformal action and the rearrangement to any positive Lp function, which
ingeniously balanced between the “bad” and “good” roles of the symmetry group.
Other symmetric rearrangement-free methods can be found in the work of Frank
and Lieb [FL10, FL12a]. The first reference used inversion-positivity to get a result
for partial exponent λ ≥ n − 2, while the second one demonstrated on Rn the
method used for the Heisenberg group in a recent breakthrough [FL12b], which will
also give the extensions in this report. The involves the proof of a quadratic inverse
second variation inequality, in the spirit of [Her70, CY87, CY95, BFM13]. The first
main theorem is as follows which was announced and stated in [CLZ16a, CLZ16b]:

Theorem 1 (Sharp HLS). On a I-type group G with homogeneous dimension Q,
centre dimension d, homogeneous norm | · | and left invariant Haar measure du,
associated to the Lie structure, for any 2(d − 1)+ < λ < Q and p = 2Q/(2Q − λ),
we have the following sharp inequality

(1)
∫∫

G2

f(u)g(v)
|u−1v|λ dudv ≤ CQ,d,λ‖f‖p‖g‖p ,

with “unique” extremizer f ≈ g ≈ J1/p
C up to the conformal symmetry group, and JC

is the Jacobian of associated Cayley transform.

Remark. The I-type group is a special class of H-type, requiring additional property
of the Lie structure. From the study of the Clifford modulo, it is known that, isomor-
phically, G = Kn×ImK with K = R,C,H,O, corresponding respectively to the case
d = 0, 1, 3, 7. Especially, the case d = 7 happens only with n = 1. For notations,
we define the element u = (z, t) with vectors z ∈ Kn, t ∈ ImK, the multiplication
uu′ = (z, t)(z′, t′) = (z + z′, t+ t′ + 2 Im z · z′), Haar measure du = dzdt, homoge-
neous dimension Q = (d+1)n+2d and norm |u| = (|z|4+|t|2)1/4. We always use the
respective multiplication associated to the division algebra K through this report.
Besides the left translation from the group multiplication, there are other automor-
phisms: dilation δu = (δz, δ2t) and inversion u 7→ ( −z

|z|2−t ,
−t
|u|4 ), and all of these

generate the whole automorphism group Aut(G), also named the conformal trans-
formation group with different language. A typical structure of HLS is the conformal
invariance under σ(f) = f ◦ σ J1/p

σ for any σ ∈ Aut(G). There is a natural Cayley
transform between the noncompact parameterized group G and the compact spheres
SQ−d: Cu =

(
2z

1+|z|2−t ,
1−|z|2+t
1+|z|2−t

)
, with Jacobian JC = 2Q−d((1 + |z|2)2 + |t|2)−Q/2.

This is a generalization of the Stereographic projection between Rn and S2n+1. By
the Cayley transform, there exists an equivalent inequality on the spheres, Corol-
lary 2. Above theorem is also a generalizaiton of former works for λ = Q − 2
of Garofalo-Vassilev [GV01], discarding the partial symmetry there, of Ivanov-
Minchev-Vassilev [IMV10, IMV12] for quaternionic case, and of the seminal work of
Jerison-Lee [JL88] for the Heisenberg case. We remark finally that in the case d > 1,
conclusion holds for the endpoint λ = 2(d−1) and we will fix 0 < λ ∈ [2(d−1)+, Q)
through this report.

Corollary 2 (Spherical HLS). On SQ−d ⊂ Kn+1, we have sharp inequality
∫∫

(SQ−d)2

F (ζ)G(η)
|1− ζ · η|λ/2 dζdη ≤ 2λ(2−d/Q−d/2)CQ,d,λ‖F‖p‖G‖p ,

with all extremizers G ≈ F (ζ) ≈ |1− ξ · ζ|−(2Q−λ)/2 with ξ ∈ B1(Kn+1).
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Remark. Here we use the standard surface Lebesgue measure dζ. The inequality
involves a relation between the distances on the compact and noncompact pictures
21−d/2|1− ζ · η|1/2 = 2d/Q−1JC(u)1/(2Q)JC(v)1/(2Q)|u−1v|.

Following this sharp HLS, some related sharp inequalities are obtained.

Corollary 3 (Sharp fractional Sobolev inequality). We have sharp inequality for
functions in the Sobolev space Hs/2,

∫

G

fLsfdu ≥ C−1
Q,d,λ‖f‖2

p′ ,

with s + λ = Q and 1/p + 1/p′ = 1, where Ls is a “fractional subLaplacian” with
fundamental solution |u|−λ. Extremizer is “unique”, and equals J1/p′

C .

Remark. The Sobolev space Hs/2 and related norm ‖ · ‖Hs/2 is induced by the left
side functional in above inequality. Similarly, we can define a distribution space
H−s/2 and HLS norm ‖ · ‖H−s/2 associated to the HLS functional. In the Euclidean
case, Ls ≈ (−∆)s/2. Otherwise, we have a spectral characterization of the fractional
subLaplacian Ls in terms of the subLaplacian and the left variant vector field along
the central variable, using the spherical Fourier transform, which is another equiv-
alent alternative definition. An analogous fractional conformal subLaplacian As on
the spheres will give a spherical version inequality. These operators intertwine with
the conformal actions, so we say they are both conformally invariant, and can be
considered as the intertwining operators related to the complementary series rep-
resentations of classical semisimple Lie groups. Note that, the sharp constants in
above inequalities are all given by the spectral gaps of associated differential and
integral operators, up to a normalization.

Corollary 4 (Spherical Log-Sobolev inequality). We have the following sharp in-
equality for 0 ≤ F ∈ L2 logL(SQ−d) normalized by

∫
SQ−d F

2 = |SQ−d|,
∫∫

(SQ−d)2

|F (ζ)− F (η)|2
|1− ζ · η|Q/2 dζdη ≥ C logSob

Q,d

∫

SQ−d

F 2 logF 2 dζ ,

with some extremizers F (ζ) ≈ |1− ξ · ζ|−Q/2, ξ ∈ B1(Kn+1), after nomalization.

Remark. The singular integral in the left side measures the smoothness, and can
be characterized by a differential operator obtained by functional differentiation of
the fractional conformal subLaplacian As at the endpoint s = 0, see [Bec97] for
classical analogue. For d = 0, 1, there exists at the other endpoint s = n or λ = 0
the sharp Beckner-Onofri and Log-HLS inequalities [Bec93, BFM13]. For d = 3, 7,
we anticipate the sharp HLS also holds for 0 < λ < 2(d−1), and so is the purported
Log-HLS. A group version of the Corollary also holds.

Another main result, obtained in [LZ15], is about the improvements of the sharp
inequalities obtained in the first main theorem. We derive a stability for the extrem-
izers of the HLS and fractional Sobolev inequalities, extending [CFW13]. Besides,
we compare the dual remainder terms as [DJ14, JH14]. Denote MHLS,MFS the
manifolds of all extremizers for the HLS and fractional Sobolev inequalities.

Theorem 5 (Improvements). There exists a positive constant α = α(Q, d, λ), s.t.

CQ,d,λ‖f‖2
p − ‖f‖2

H−s/2 ≥ α inf
g∈MHLS

‖f − g‖2
p ,
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and
‖f‖2

Hs/2 − C−1
Q,d,λ‖f‖2

p′ ≥ α inf
g∈MFS

‖f − g‖2
Hs/2 .

Besides, concerning the dual remainder terms for f ≥ 0, we have the global estimate

‖f‖2(p′−2)
p′ (‖f‖2

Hs/2 − C−1
Q,d,λ‖f‖2

p′) ≥ C−2
Q,d,λ(CQ,d,λ‖fp

′/p‖2
p − ‖fp

′/p‖2
H−s/2)

and the local estimate

lim inf
f

Hs/2−−−→M∗FS

‖f‖2(p′−2)
p′ (‖f‖2

Hs/2 − C−1
Q,d,λ‖f‖2

p′)
CQ,d,λ‖fp′/p‖2

p − ‖fp′/p‖2
H−s/2

≥ Q+ 2 + 2 sign d+ s

Q+ 2 + 2 sign d− s C
−2
Q,d,λ .

Remark. Theorem holds both on the groups and spheres. The stability is established
from the local stability and a contradiction argument, and therefore we have no
explicit constant. A constructive method is still open for global stability. The
global dual estimate is not far from the completion of square trick, while the local
one is a spectral estimate. They give a lower and upper bound for the sharp constant
of the quotient functional in last line. In the case d = 1, 2, we have similar dual
estimate for the Log-HLS and Beckner-Onofri inequalities.

2. Sketch of the Proof

Proof of Theorem 1. Following closely Frank-Lieb’s argument, we split the proof to
several steps.

Step 1. We need the existence of extremizers first. A generic method for existence
is the concentration compactness technique developed by Lions. We can also follow
the compactness+TT ∗ method as in [FL12b]. In this direction, the positivity of the
fractional integral operator for λ > 2(d − 1)+ is important. This also restrict the
problem to positive functions (and F ≈ G). For the endpoint of cases with high
dimensional centres, we can get the existence from the uniqueness of positive situa-
tion, and for uniqueness, we will consider the quadratic extremizer first (assuming
F = G). See Proposition 9 for the positivity.

Step 2. Aiming to the uniqueness, we consider the problem on the sphere for
simplicity. By the zero center-mass trick, from Chang-Yang, it suffices to prove
that constant is the unique extremizer satisfying the zero center-mass condition.

Lemma 6. For any extremizer F , there exists a conformal transformation τ ∈
Aut(SQ−d), s.t., the new function H = F ◦ τ J1/p

τ has zero center-mass, i.e.,
∫

SQ−d

H(ζ)ζ dζ = 0 .

It is interesting that the zero center-mass trick can assimilate such a big conformal
symmetry group perfectly. It has also been used recently for the extremal problem
of Log-HLS on the Heisenberg group [BFM13]. A constructive proof of this lemma
using the group dilations and sphere rotations also helps to see clearly the explicit
formulae for extremizers. Be aware of this, we first claim that

Proposition 7. Any extremizer with zero center-mass is a constant function.

An Zhang
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Step 3. After computation of the second variation of the HLS functional, around
the extremizer H with zero center-mass, along perturbation ϕij = Hζij with complex
coordinates ζij , by summation and symmetry, we can get inequality
∫∫

(SQ−d)2

H(ζ)H(η)2 Re (ζ, η)C
|1− ζ · η|λ/2 dζdη ≤ 2(p− 1)

∫∫

(SQ−d)2

H(ζ)H(η)
|1− ζ · η|λ/2 dζdη ,

where (ζ, η)C is the multiplication as complex vectors, whose real part however is
equal to that of ζ · η using the standard K multiplication.

Step 4. We finally prove an inverse of above second variation inequality, which
reaches equality only when H is a constant. This involves meticulous spectral
computation. By abuse of notations, we will write the decomposition of L2(SQ−d)
to a sequence of spherical harmonics Vj,k, with binary subscripts {(j, k)} ∈ I for all
cases with different interpretations, and see references for details in case.

Proposition 8. For 0 < λ ∈ [2(d− 1)+, Q), the following inequality holds for any
F ∈ L2(SQ−d),
∫∫

(SQ−d)2

F (ζ)F (η)2Re (ζ, η)C
|1− ζ · η|λ/2 dζdη ≥ 2(p− 1)

∫∫

(SQ−d)2

F (ζ)F (η)
|1− ζ · η|λ/2 dζdη ,

which reaches equality if and only if F is a constant function when λ > 2(d− 1)+ ;
When λ = 2(d− 1) with d > 1, equality holds if and only if F ∈ V0,0 ⊕ Vj≥k≥2 .

To prove the inverse quadratic inequality, we need to compute the spectrum of the
fractional integral operators of two types

Kλ
1 = 1

|1− ζ · η|λ/2 and Kλ
2 = |ζ · η|2

|1− ζ · η|λ/2 ,

as
2 Re (ζ, η)C
|1− ζ · η|λ/2 = 2 Re ζ · η

|1− ζ · η|λ/2 = 1
|1− ζ · η|λ/2 + |ζ · η|2

|1− ζ · η|λ/2 −
1

|1− ζ · η|λ/2−2 .

We list the result without proof, which involves a Funk-Hecke type formula.

Proposition 9 (Eigenvalues). The eigenvalues of the two kernels w.r.t. the decom-
position of spherical harmonics are respectively

E1
j,k = 2πQ−d

2 +1Γ((Q− λ)/2)
Γ(λ/4)Γ(λ/4− d/2 + 1)

Γ(j + λ/4)
Γ(j + (2Q− λ)/4)

Γ(k + λ/4 + (1− d)/2)
Γ(k + (2Q− λ)/4 + (1− d)/2) ,

and

E2
j,k = E1

j,k

[
1−

(
λ/4− (1 + d)/2

)
(c− a− b)

(
1

(a− 1)(c− a) + 1
(b− 1)(c− b)

−
(
λ/4− (1 + d)/2

) c− a− b+ 1
(a− 1)(b− 1)(c− a)(c− b)

)]

with
(a, b, c) := (j + λ/4, k + λ/4 + (1− d)/2, j + k +Q/2 + (1− d)/2) .

Step 5. Conclusion. For positive case λ > 2(d − 1)+, from Step 3-4, we know
any extremizer with zero center-mass has to be a constant, then from Step 2, we
know any extremizer can be written as J1/p

τ for some τ , which indeed is, for any τ
from the conformal invariance. For semipositive case λ = 2(d − 1) with d > 1, we
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can borrow the Euler-Lagrange equation to prove the claim, concerning the last
sentence in Proposition 8. Explicit formulae for the extremizers and Jacobian of
the conformal transformations can be calculated both on the groups and spheres.
So far, we have proved Theorem 1 and Corollary 2. �

Proof of Corollary 3. We consider the problem on the sphere and assume that
A−1
s = |1− ζ · η|−λ/2. Using L2 inner product (·, ·) and from Cauchy-Schwarz in-

equality, we have a dual argument,

‖F‖2
p′ = sup

‖G‖p=1
(F,G)2 = sup

‖G‖p=1
(A1/2

s F,A−1/2
s G)2

≤ sup
‖G‖p=1

(F,AsF ) (G,A−1
s G) = CQ,d,λ (F,AsF )

which reaches equality if and only if G is an extremizer for the spherical HLS and
F = Gp/p

′ , that is F = J
1/p′
τ for any conformal transformation τ on the spheres. �

Proof of Corollary 4. We use the kind of functional differential argument, just as
for the classical case. Note that

∫∫

(SQ−d)2

F 2(ζ) + F 2(η)
|1− ζ · η|λ/2 dζdη = 2E1

0,0 |SQ−d| = 2CSHLS
Q,d,λ |SQ−d|2/p,

and subtract double the sharp spherical HLS, we get
∫∫

(SQ−d)2

|F (ζ)− F (η)|2
|1− ζ · η|λ/2 dζdη ≥ 2CSHLS

Q,d,λ (|SQ−d|2/p − ‖F‖2
p)

λ→Q−−−→ C logSob
Q,d

∫

SQ−d

F 2 logF 2 dζ .

It is done after checking the limitations. Actually, we can also differentiate the
sharp fractional Sobolev inequality at s = 0 to get this inequality. �

Proof of Theorem 5. We consider the problems on the sphere.

Stability. We need the following two lemmas, a local stability result and a compact-
ness argument. Denote E1 = E1

1,1 for d = 0, and E1 = E1
1,0 for d > 0 and similarly

define E2, using the eigenvalues in Proposition 9. Then

E1/E2 = Q+ s+ 2 + 2 sign d
Q− s+ 2 + 2 sign d and 1− E2/E1 = 2s

Q+ s+ 2 + 2 sign d .

Lemma 10 (Local stability). Denote d(F,G) the corresponding distance norms.
We have the following stability estimates in the local regime:

(1) For ‖F‖Hs/2 > d(F,MFS)→ 0,

d2(F,MFS) ≥ ‖F‖2
Hs/2 − C−1

Q,d,λ‖F‖2
p′

≥ (1− E2/E1) d2(F,MFS) + o(d2(F,MFS)) .

(2) There exist two positive constants α0 and α1, only depending on Q, d and
λ, s.t., for F ∈ Lp with d(F,MHLS)→ 0 and F 9 0,

‖F‖p(α1 d(F,MHLS) + o(d(F,MHLS))) ≥ CQ,d,λ‖F‖2
p − ‖F‖2

H−s/2

≥ α0 d
2(F,MHLS) + o(d2(F,MHLS))

An Zhang
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Remark. The first estimate is not far from orthogonal decomposition, the Taylor
expansion and spectral estimates. The second one is more complicated as the dif-
ference functional is not in C2, because p < 2. This problem has been dealt in a
former work of Christ for Hausdorff-Young inequality. We can handle similarly or
borrow the second variation lemma there directly.

Lemma 11 (Compactness). Let (Fj) be an extremizing sequence of the HLS or
fractional Sobolev inequalities, i.e.

‖Fj‖2
H−s/2/‖Fj‖2

p
j−−→ CQ,d,λ, or ‖Fj‖2

Hs/2/‖Fj‖2
p′

j−−→ C−1
Q,d,λ ,

then
d(Fj ,MHLS)/‖Fj‖p j−−→ 0, or d(Fj ,MFS)/‖Fj‖Hs/2

j−−→ 0 ,

Remark. This lemma is about the precompactness of the extremizing sequence,
which is not trivial, and then gives the existence of extremizer, a strong limit of
some extremizing sequence.

Conclusion. By contradiction, if the global positive constant α in the right side in
Theorem 5, does not exist, then we have a sequence (Fj), s.t., the quotient of the
remainder term and the distance square of (Fj) will goes to zero. This means that
it is an extremizing sequence as d(F,M) is less than the norm of F , which means,
by the compactness lemma, it is in the neighborhood of the extremizering manifold.
This amounts to the local stability estimate, which will give a positive lower bound
of the remainder terms, immediately a contradiction.

Dual estimates. The global estimate comes from the trick of completion of squares,
∥∥‖F‖p

′−2
p′ A1/2

s F − C−1
Q,d,λA

−1/2
s (F p

′/p)
∥∥2

2 ≥ 0 ,
while the local estimate comes from Taylor expansion and spectral estimates. As-
sume F = 1 + ϕ with ϕ ⊥ T1M = H0 ⊕ H1 where Hk is the classical spherical
harmonics on the real sphere. Then the quotient functional can be estimated by
linearization using ϕ. Take the spherical harmonics decomposition ϕ =

∑
I ϕj,k,

then with some constant sequences (cj,k),

lim inf
ϕ→0, ϕ⊥T1M

‖F‖2(p′−2)
p′ (‖F‖2

Hs/2 − C−1
Q,d,λ‖F‖2

p′)
CQ,d,λ‖F p′/p‖2

p − ‖F p′/p‖2
H−s/2

= lim inf E1

∑
ϕ⊥T1M

cj,k ‖ϕj,k‖2
2∑

ϕ⊥T1M
Ej,k cj,k ‖ϕj,k‖2

2
= E1/E2 .

It is done and in cases d = 0, 1, this can be done for the dual Log-HLS and Beckner-
Onofri inequalities. �
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