Ce texte présente les résultats obtenus dans [BI11, BI14] en collaboration avec Liviu Ignat sur la représentation et les propriétés de dispersion de la solution de l’équation linéaire de Schrödinger sur certains graphes métriques. Le cas de l’équation de Schrödinger sur la droite avec plusieurs potentiels de Dirac découle comme cas particulier.
@article{SLSEDP_2013-2014____A20_0, author = {Valeria Banica}, title = {Dispersion pour l{\textquoteright}\'equation de {Schr\"odinger} {1-D} avec plusieurs potentiels de {Dirac}}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:20}, pages = {1--11}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2013-2014}, doi = {10.5802/slsedp.63}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.63/} }
TY - JOUR AU - Valeria Banica TI - Dispersion pour l’équation de Schrödinger 1-D avec plusieurs potentiels de Dirac JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:20 PY - 2013-2014 SP - 1 EP - 11 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.63/ DO - 10.5802/slsedp.63 LA - fr ID - SLSEDP_2013-2014____A20_0 ER -
%0 Journal Article %A Valeria Banica %T Dispersion pour l’équation de Schrödinger 1-D avec plusieurs potentiels de Dirac %J Séminaire Laurent Schwartz — EDP et applications %Z talk:20 %D 2013-2014 %P 1-11 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.63/ %R 10.5802/slsedp.63 %G fr %F SLSEDP_2013-2014____A20_0
Valeria Banica. Dispersion pour l’équation de Schrödinger 1-D avec plusieurs potentiels de Dirac. Séminaire Laurent Schwartz — EDP et applications (2013-2014), Talk no. 20, 11 p. doi : 10.5802/slsedp.63. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.63/
[ACFD12] R. Adami, C. Cacciapuoti, D. Finco, and Noja D. Stationary states of NLS on star graphs. Europhysics Letters, 100(1) :10003, 6p, 2012.
[ACFN11] R. Adami, C. Cacciapuoti, D. Finco, and D. Noja. Fast solitons on star graphs. Rev. Math. Phys., 23(4) :409–451, 2011. | MR | Zbl
[ACFN12] R. Adami, C. Cacciapuoti, D. Finco, and D. Noja. On the structure of critical energy levels for the cubic focusing NLS on star graphs. J. Phys. A, 45(19) :192001, 7, 2012. | MR | Zbl
[ACFN13] R. Adami, C. Cacciapuoti, D. Finco, and D. Noja. Constrained energy minimization and orbital stability for the NLS equation on a star graph. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis, 2013. to appear, . | DOI
[ACFN14] R. Adami, C. Cacciapuoti, D. Finco, and D. Noja. Variational properties and orbital stability of standing waves for NLS equation on a star graph. J. Differential Equations, 257(10) :3738–3777, 2014. | MR
[AGHKH05] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden. Solvable models in quantum mechanics. AMS Chelsea Publishing, Providence, RI, second edition, 2005. With an appendix by Pavel Exner. | MR | Zbl
[AMAN12] F. Ali Mehmeti, K. Ammari, and S. Nicaise. Dispersive effects and high frequency behaviour for the Schrödinger equation in star-shaped networks. 2012. | arXiv
[AN14] R. Adami and D. Noja. Exactly Solvable Models and Bifurcations : the Case of the Cubic with a or a Interaction in Dimension One. Math. Model. Nat. Phenom., 9(5) :1–16, 2014. | MR
[ANV13] R. Adami, D. Noja, and N. Visciglia. Constrained energy minimization and ground states for NLS with point defects. Discrete Contin. Dyn. Syst. Ser. B, 18(5) :1155–1188, 2013. | MR | Zbl
[APF14] J. Angulo Pava and L. C. F. Ferreira. On the Schrödinger equation with singular potentials. Differential Integral Equations, 27(7-8) :767–800, 2014. | MR
[AS05] R. Adami and A. Sacchetti. The transition from diffusion to blow-up for a nonlinear Schrödinger equation in dimension 1. J. Phys. A, 38(39) :8379–8392, 2005. | MR | Zbl
[AST14] R. Adami, E. Serra, and P. Tilli. Nls ground states on graphs. 2014. | arXiv
[Ban03] V. Banica. Dispersion and Strichartz inequalities for Schrödinger equations with singular coefficients. SIAM J. Math. Anal., 35(4) :868–883 (electronic), 2003. | MR | Zbl
[BI11] V. Banica and L. I. Ignat. Dispersion for the Schrödinger equation on networks. J. Math. Phys., 52(8) :083703, 14, 2011. | MR | Zbl
[BI14] V. Banica and L. I. Ignat. Dispersion for the Schrödinger equation on the line with multiple Dirac delta potentials and on delta trees. Anal. PDE, 7(4) :903–927, 2014. | MR
[CH10] R. C. Cascaval and C. T. Hunter. Linear and nonlinear Schrödinger equations on simple networks. Libertas Math., 30 :85–98, 2010. | MR | Zbl
[DH09] K. Datchev and J. Holmer. Fast soliton scattering by attractive delta impurities. Comm. Partial Differential Equations, 34(7-9) :1074–1113, 2009. | MR | Zbl
[DMW11] V. Duchêne, J. L. Marzuola, and M. I. Weinstein. Wave operator bounds for one-dimensional Schrödinger operators with singular potentials and applications. J. Math. Phys., 52(1) :013505, 17, 2011. | MR
[Exn11] P. Exner. Vertex couplings in quantum graphs : approximations by scaled Schrödinger operators. Proceedings of the ICM Satellite Conference Mathematics in Science and Technology (New Delhi 2010 ; A.H. Siddiqi, R.C. Singh, P. Manchanda, eds.) World Scientific, Singapore, 71–92, 2011. | MR | Zbl
[FJ08] R. Fukuizumi and L. Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential. Discrete Contin. Dyn. Syst., 21(1) :121–136, 2008. | MR | Zbl
[FOO08] R. Fukuizumi, M. Ohta, and T. Ozawa. Nonlinear Schrödinger equation with a point defect. Ann. Inst. H. Poincaré Anal. Non Linéaire, 25(5) :837–845, 2008. | Numdam | MR | Zbl
[GRS64] I. Gelfand, D. Raikov, and G. Shilov. Commutative normed rings. Translated from the Russian, with a supplementary chapter. Chelsea Publishing Co., New York, 1964. | MR
[GS86] B. Gaveau and L. S. Schulman. Explicit time-dependent Schrödinger propagators. J. Phys. A, 19(10) :1833–1846, 1986. | MR | Zbl
[GS06] S. Gnutzmann and U. Smilansky. Quantum graphs : Applications to quantum chaos and universal spectral statistics. Advances in Physics, 55 :527–625, October 2006.
[HMZ07a] J. Holmer, J. Marzuola, and M. Zworski. Fast soliton scattering by delta impurities. Comm. Math. Phys., 274(1) :187–216, 2007. | MR | Zbl
[HMZ07b] J. Holmer, J. Marzuola, and M. Zworski. Soliton splitting by external delta potentials. J. Nonlinear Sci., 17(4) :349–367, 2007. | MR | Zbl
[HZ07] J. Holmer and M. Zworski. Slow soliton interaction with delta impurities. J. Mod. Dyn., 1(4) :689–718, 2007. | MR | Zbl
[Ign10] L. I. Ignat. Strichartz estimates for the Schrödinger equation on a tree and applications. SIAM J. Math. Anal., 42(5) :2041–2057, 2010. | MR | Zbl
[KS06] V. Kostrykin and R. Schrader. Laplacians on metric graphs : eigenvalues, resolvents and semigroups. In Quantum graphs and their applications, volume 415 of Contemp. Math., pages 201–225. Amer. Math. Soc., Providence, RI, 2006. | MR | Zbl
[KS10] H. Kovařík and A. Sacchetti. A nonlinear Schrödinger equation with two symmetric point interactions in one dimension. J. Phys. A, 43(15) :155205, 16, 2010. | MR | Zbl
[Kuc04] P. Kuchment. Quantum graphs. I. Some basic structures. Waves Random Media, 14(1) :S107–S128, 2004. Special section on quantum graphs. | MR | Zbl
[Kuc05] P. Kuchment. Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A, 38(22) :4887–4900, 2005. | MR | Zbl
[Kuc08] P. Kuchment. Quantum graphs : an introduction and a brief survey. In Analysis on graphs and its applications, volume 77 of Proc. Sympos. Pure Math., pages 291–312. Amer. Math. Soc., Providence, RI, 2008. | MR | Zbl
[LCFF+08] S. Le Coz, R. Fukuizumi, G. Fibich, B. Ksherim, and Y. Sivan. Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential. Phys. D, 237(8) :1103–1128, 2008. | MR | Zbl
[Man89] E. B. Manoukian. Explicit derivation of the propagator for a Dirac delta potential. J. Phys. A, 22(1) :67–70, 1989. | MR | Zbl
Cited by Sources: