Dans cet exposé, nous présentons quelques résultats récents concernant certains problèmes d’identification de paramètres de type hybride, aussi appelés multi-physiques, pour lesquels le modèles physique sous-jacent est une équation aux dérivées partielles elliptique.
@article{SLSEDP_2013-2014____A2_0, author = {Giovanni S. Alberti and Yves Capdeboscq}, title = {\`A propos de certains probl\`emes inverses hybrides}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:2}, pages = {1--9}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2013-2014}, doi = {10.5802/slsedp.50}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.50/} }
TY - JOUR AU - Giovanni S. Alberti AU - Yves Capdeboscq TI - À propos de certains problèmes inverses hybrides JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:2 PY - 2013-2014 SP - 1 EP - 9 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.50/ DO - 10.5802/slsedp.50 LA - fr ID - SLSEDP_2013-2014____A2_0 ER -
%0 Journal Article %A Giovanni S. Alberti %A Yves Capdeboscq %T À propos de certains problèmes inverses hybrides %J Séminaire Laurent Schwartz — EDP et applications %Z talk:2 %D 2013-2014 %P 1-9 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.50/ %R 10.5802/slsedp.50 %G fr %F SLSEDP_2013-2014____A2_0
Giovanni S. Alberti; Yves Capdeboscq. À propos de certains problèmes inverses hybrides. Séminaire Laurent Schwartz — EDP et applications (2013-2014), Talk no. 2, 9 p. doi : 10.5802/slsedp.50. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.50/
[1] G. S. Alberti. On multiple frequency power density measurements. Inverse Problems, 29(11) :115007, 25, 2013. | MR
[2] G. S. Alberti. On multiple frequency power density measurements II. The full Maxwell’s equations. submitted, 2013. | MR
[3] G. S. Alberti. Enforcing local non-zero-constraints in pde and applications to hybrid imaging problems. sub, page 23, 2014.
[4] G. Alessandrini. Determining conductivity by boundary measurements, the stability issue. In Renato Spigler, editor, Applied and Industrial Mathematics, volume 56 of Mathematics and Its Applications, pages 317–324. Springer Netherlands, 1991. | MR | Zbl
[5] G. Alessandrini and V. Nesi. Univalent -harmonic mappings. Arch. Rat. Mech. Anal., 158 :155–171, 2001. | MR | Zbl
[6] Giovanni Alessandrini, Antonino Morassi, Edi Rosset, and Sergio Vessella. On doubling inequalities for elliptic systems. J. Math. Anal. Appl., 357(2) :349–355, 2009. | MR | Zbl
[7] H. Ammari. An introduction to mathematics of emerging biomedical imaging, volume 62 of Mathématiques & Applications (Berlin). Springer, Berlin, 2008. | MR | Zbl
[8] H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter, and M. Fink. Electrical impedance tomography by elastic deformation. SIAM J. Appl. Math., 68(6) :1557–1573, 2008. | MR | Zbl
[9] H. Ammari, E. Bossy, V. Jugnon, and H. Kang. Mathematical modeling in photoacoustic imaging of small absorbers. SIAM Rev., 52(4) :677–695, 2010. | MR | Zbl
[10] H. Ammari, E. Bretin, J. Garnier, and V. Jugnon. Coherent interferometry algorithms for photoacoustic imaging. SIAM J. Numer. Anal., 50(5) :2259–2280, 2012. | MR | Zbl
[11] H. Ammari, Y. Capdeboscq, F. de Gournay, A. Rozanova-Pierrat, and F. Triki. Microwave imaging by elastic deformation. SIAM J. Appl. Math., 71(6) :2112–2130, 2011. | MR | Zbl
[12] Habib Ammari, Laure Giovangigli, Loc Hoang Nguyen, and Jin-Keun Seo. Admittivity imaging from multi-frequency micro-electrical impedance tomography. 2014. | arXiv
[13] K. Astala and L. Päivärinta. Calderón’s inverse conductivity problem in the plane. Ann. of Math. (2), 163(1) :265–299, 2006. | MR | Zbl
[14] G. Bal, E. Bonnetier, F. Monard, and F. Triki. Inverse diffusion from knowledge of power densities. Inverse Probl. Imaging, 7(2) :353–375, 2013. | MR | Zbl
[15] Patricia Bauman, Antonella Marini, and Vincenzo Nesi. Univalent solutions of an elliptic system of partial differential equations arising in homogenization. Indiana Univ. Math. J., 50(2) :747–757, 2001. | MR
[16] M. Briane. Isotropic realizability of electric fields around critical points. Discrete and Continuous Dynamical Systems - Series B, 19 :353–372, 2014. | MR
[17] M. Briane, G. W. Milton, and V. Nesi. Change of sign of the corrector’s determinant for homogenization in three-dimensional conductivity. Arch. Ration. Mech. Anal., 173(1) :133–150, 2004. | MR | Zbl
[18] M. Briane, G. W. Milton, and A. Treibergs. Which electric fields are realizable in conducting materials ? ESAIM : Mathematical Modelling and Numerical Analysis, 48 :307–323, 3 2014. | Numdam | MR
[19] A.-P. Calderón. On an inverse boundary value problem. In Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pages 65–73. Soc. Brasil. Mat., Rio de Janeiro, 1980. | MR
[20] Y. Capdeboscq, J. Fehrenbach, F. de Gournay, and O. Kavian. Imaging by modification : numerical reconstruction of local conductivities from corresponding power density measurements. SIAM J. Imaging Sci., 2(4) :1003–1030, 2009. | MR | Zbl
[21] P. Kuchment and L. Kunyansky. Mathematics of photoacoustic and thermoacoustic tomography. In Otmar Scherzer, editor, Handbook of Mathematical Methods in Imaging, pages 817–865. Springer New York, 2011. | MR | Zbl
[22] R. S. Laugesen. Injectivity can fail for higher-dimensional harmonic extensions. Complex Variables Theory Appl., 28(4) :357–369, 1996. | MR | Zbl
[23] N. Mandache. Exponential instability in an inverse problem for the Schrödinger equation. Inverse Problems, 17(5) :1435, 2001. | MR | Zbl
[24] Antonios D. Melas. An example of a harmonic map between Euclidean balls. Proc. Amer. Math. Soc., 117(3) :857–859, 1993. | MR | Zbl
[25] Siegfried Momm. Lower bounds for the modulus of analytic functions. Bull. London Math. Soc., 22(3) :239–244, 1990. | MR | Zbl
[26] G. Uhlmann. Electrical impedance tomography and Calderón’s problem. Inverse Problems, 25(12) :123011, 2009. | Zbl
[27] K. Wang and M. A. Anastasio. Photoacoustic and thermoacoustic tomography : Image formation principles. In O. Scherzer, editor, Handbook of Mathematical Methods in Imaging, pages 781–815. Springer New York, 2011. | Zbl
Cited by Sources: