@article{SLSEDP_2011-2012____A3_0, author = {T. Kappeler and B. Schaad and P. Topalov}, title = {Results on qualitative features of periodic solutions of {KdV}}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:3}, pages = {1--7}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2011-2012}, doi = {10.5802/slsedp.3}, mrnumber = {3379844}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.3/} }
TY - JOUR AU - T. Kappeler AU - B. Schaad AU - P. Topalov TI - Results on qualitative features of periodic solutions of KdV JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:3 PY - 2011-2012 SP - 1 EP - 7 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.3/ DO - 10.5802/slsedp.3 LA - en ID - SLSEDP_2011-2012____A3_0 ER -
%0 Journal Article %A T. Kappeler %A B. Schaad %A P. Topalov %T Results on qualitative features of periodic solutions of KdV %J Séminaire Laurent Schwartz — EDP et applications %Z talk:3 %D 2011-2012 %P 1-7 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.3/ %R 10.5802/slsedp.3 %G en %F SLSEDP_2011-2012____A3_0
T. Kappeler; B. Schaad; P. Topalov. Results on qualitative features of periodic solutions of KdV. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Talk no. 3, 7 p. doi : 10.5802/slsedp.3. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.3/
[1] M. Erdogan, N. Tzirakis, V. Zharnitsky : Near-linear dynamics in KdV with periodic boundary conditions, Nonlinearity 23 (2010), 1675-1694. | MR | Zbl
[2] B. Grébert, T. Kappeler, J. Pöschel: Normal form theory of the NLS equation, preliminary version, arxiv.org/abs/0907.3938v1 2009. To appear in EMS Series of Lectures in Mathematics, EMS Publishing House.
[3] A. Its, V. Matveev : A class of solutions of the Korteweg-de Vries equation(in Russian), Problems in Math. Physics N08, Izdat. Leningrad Univ., Leningrad, 1976 , 79-92. | MR
[4] T. Kappeler: Fibration of the phase-space for the Korteweg-de Vries equation, Ann. Inst. Fourier 41 (1991), 539-575. | Numdam | MR | Zbl
[5] T. Kappeler, M. Makarov: On action-angle variables for the second Poisson bracket, Comm. in Math. Phys., 214, 3 (2000), 651-677. | MR | Zbl
[6] T. Kappeler, M. Makarov: On Birkhoff coordinates for KdV, Ann. H. Poincaré 2 (2001), 807 - 856. | MR | Zbl
[7] T. Kappeler, J. Pöschel: KdV & KAM, Ergebnisse Math. u. Grenzgebiete, Springer, Berlin, 2003. | MR
[8] T. Kappeler, B. Schaad, P. Topalov: mKdV and its Birkhoff coordinates, Physica D: Nonlinear Phenomena, 237, 10-12 (2008), 1655-1662. | MR | Zbl
[9] T. Kappeler, B. Schaad, P. Topalov: Asymptotic estimates of spectral quantities of Schrödinger operators, arXiv: 1107.4542.
[10] T. Kappeler, B. Schaad, P. Topalov: Qualitative features of periodic solutions of KdV, arXiv: 1110.0455.
[11] T. Kappeler, P. Topalov: Global fold structure of the Miura map on , Int. Math. Research Notices (2004), 2039-2068. | MR | Zbl
[12] T. Kappeler, P. Topalov: Global wellposedness of KdV in , Duke Math. J. 135 (2006), 327-360. | MR | Zbl
[13] S. Kuksin: Damped driven KdV and effective equation for long-time behaviour of its solution, preliminary version, 2009. | MR
[14] S. Kuksin, G. Perelman: Vey theorem in infinite dimensions and its application to KdV, Discrete and Continuous Dynamical Systems Ser. A, 27, no 1, (2010), 1-24. | MR | Zbl
[15] S. Kuksin, A. Piatnitski: Khasminskii - Whitham averaging for randomly perturbated KdV equation, J. Math. Pures Appl. 89 (2008), 400-428. | MR | Zbl
[16] V. Marchenko: Sturm-Liouville operators and applications, Birkhäuser, Basel, 1986. | MR | Zbl
[17] H. McKean, E. Vaninsky: Action-angle variables for the cubic Schroedinger equation, Comm. Pure Appl. Math. 50 (1997), 489-562. | MR | Zbl
[18] A. Savchuk, A. Shkalikov: On the eigenvalues of the Sturm-Liouville operator with potentials from Sobolev spaces, Math. Notes 80, no 6 (2006), 864-884. | MR | Zbl
[19] B. Schaad: Qualitative features of periodic solutions of KdV, PhD thesis, University of Zurich, 2011.
Cited by Sources: