The aim of this talk is to present some recent existence results about quasi-periodic solutions for PDEs like nonlinear wave and Schrödinger equations in , , and the - derivative wave equation. The proofs are based on both Nash-Moser implicit function theorems and KAM theory.
@article{SLSEDP_2011-2012____A30_0, author = {Massimiliano Berti}, title = {Quasi-periodic solutions of {PDEs}}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:30}, pages = {1--11}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2011-2012}, doi = {10.5802/slsedp.24}, mrnumber = {3380987}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.24/} }
TY - JOUR AU - Massimiliano Berti TI - Quasi-periodic solutions of PDEs JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:30 PY - 2011-2012 SP - 1 EP - 11 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.24/ DO - 10.5802/slsedp.24 LA - en ID - SLSEDP_2011-2012____A30_0 ER -
%0 Journal Article %A Massimiliano Berti %T Quasi-periodic solutions of PDEs %J Séminaire Laurent Schwartz — EDP et applications %Z talk:30 %D 2011-2012 %P 1-11 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.24/ %R 10.5802/slsedp.24 %G en %F SLSEDP_2011-2012____A30_0
Massimiliano Berti. Quasi-periodic solutions of PDEs. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Talk no. 30, 11 p. doi : 10.5802/slsedp.24. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.24/
[1] Bambusi D., Berti M., Magistrelli E., Degenerate KAM theory for partial differential equations, J. Differential Equations 250, 3379-3397, 2011. | MR | Zbl
[2] Bambusi D., Delort J.M., Grebért B., Szeftel J., Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Comm. Pure Appl. Math. 60, 11, 1665-1690, 2007. | MR | Zbl
[3] Berti M., Nonlinear Oscillations of Hamiltonian PDEs, Progr. Nonlinear Differential Equations Appl. 74, H. Brézis, ed., Birkhäuser, Boston, 1-181, 2008. | MR | Zbl
[4] Berti M., Biasco L., Branching of Cantor manifolds of elliptic tori and applications to PDEs, Comm. Math. Phys, 305, 3, 741-796, 2011. | MR | Zbl
[5] Berti M., Biasco L., Procesi M. KAM theory for the Hamiltonian derivative wave equation, preprint 2011.
[6] Berti M., Bolle P., Quasi-periodic solutions with Sobolev regularity of NLS on with a multiplicative potential, to appear on the Journal European Math. Society. | MR
[7] Berti M., Bolle P., Quasi-periodic solutions of nonlinear Schrödinger equations on , Rend. Lincei Mat. Appl. 22, 223-236, 2011. | MR | Zbl
[8] Berti M., Bolle P., Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential, preprint 2012. | MR
[9] Berti M., Bolle P., Procesi M., An abstract Nash-Moser theorem with parameters and applications to PDEs, Ann. I. H. Poincaré, 27, 377-399, 2010. | Numdam | MR | Zbl
[10] Berti M., Procesi M., Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces, Duke Math. J., 159, 3, 479-538, 2011. | MR
[11] Bourgain J., Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, no. 11, 1994. | MR | Zbl
[12] Bourgain J., On Melnikov’s persistency problem, Internat. Math. Res. Letters, 4, 445 - 458, 1997. | MR | Zbl
[13] Bourgain J., Quasi-periodic solutions of Hamiltonian perturbations of linear Schrödinger equations, Annals of Math. 148, 363-439, 1998. | MR | Zbl
[14] Bourgain J., Periodic solutions of nonlinear wave equations, Harmonic analysis and partial differential equations, 69–97, Chicago Lectures in Math., Univ. Chicago Press, 1999. | MR | Zbl
[15] Bourgain J., Green’s function estimates for lattice Schrödinger operators and applications, Annals of Mathematics Studies 158, Princeton University Press, Princeton, 2005. | MR | Zbl
[16] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Weakly turbolent solutions for the cubic defocusing nonlinear Schrödinger equation, 181, 1, 39-113, Inventiones Math., 2010. | MR | Zbl
[17] Craig W., Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panoramas et Synthèses, 9, Société Mathématique de France, Paris, 2000. | MR | Zbl
[18] Craig W., Wayne C. E., Newton’s method and periodic solutions of nonlinear wave equation, Comm. Pure Appl. Math. 46, 1409-1498, 1993. | MR | Zbl
[19] Eliasson L.H., Perturbations of stable invariant tori for Hamiltonian systems, Ann. Sc. Norm. Sup. Pisa., 15, 115-147, 1988. | Numdam | MR | Zbl
[20] Eliasson L. H., Kuksin S., KAM for nonlinear Schrödinger equation, Annals of Math., 172, 371-435, 2010. | MR | Zbl
[21] Geng J., You J., A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces, Comm. Math. Phys. 262, 343-372, 2006. | MR | Zbl
[22] Grebert B., Thomann L., KAM for the quantum harmonic oscillator, Comm. Math. Phys. 307, 2, 383-427, 2011. | MR | Zbl
[23] Kappeler T., Pöschel J., KAM and KdV, Springer, 2003.
[24] Kuksin S., Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional Anal. i Prilozhen. 2, 22-37, 95, 1987. | MR | Zbl
[25] Kuksin S., Analysis of Hamiltonian PDEs, Oxford Lecture series in Math. and its applications, 19, Oxford University Press, 2000. | MR | Zbl
[26] Liu J., Yuan X., A KAM Theorem for Hamiltonian Partial Differential Equations with Unbounded Perturbations, Comm. Math. Phys, 307 (3), 629-673, 2011. | MR | Zbl
[27] Lojasiewicz S., Zehnder E., An inverse function theorem in Fréchet-spaces, J. Funct. Anal. 33, 165-174, 1979. | MR | Zbl
[28] Pöschel J., A KAM-Theorem for some nonlinear PDEs, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 23, 119-148, 1996. | Numdam | MR | Zbl
[29] Procesi C., Procesi M., A normal form for the Schrödinger equation with analytic non-linearities, to appear on Comm. Math.Phys. | MR
[30] Wang W. M., Supercritical nonlinear Schrödinger equations I: quasi-periodic solutions, preprint 2010.
[31] Wayne E., Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127, 479-528, 1990. | MR | Zbl
Cited by Sources: