Disproving the Deift conjecture: the loss of almost periodicity
Séminaire Laurent Schwartz — EDP et applications (2024-2025), Exposé no. 2, 12 p.

In this note we present a result from [CKV24] related to a conjecture of Deift from 2008, who posited that almost periodic initial data leads to almost periodic solutions to the Korteweg-de Vries equation (KdV). We show that this is not always the case. Building on the new observation that the conjecture fails for the Airy equation, we construct almost periodic initial data whose KdV evolution remains bounded, but loses almost periodicity at a later time. This text is based on a Laurent Schwartz seminar given by the first author in November 2024, which in turn is based on joint work with Rowan Killip and Monica Vişan.

Publié le :
DOI : 10.5802/slsedp.178

Andreia Chapouto 1 ; Rowan Killip 2 ; Monica Vişan 2

1 CNRS, and Laboratoire de mathématiques de Versailles, UVSQ, Université Paris-Saclay, CNRS, 45 avenue des États-Unis, 78035 Versailles Cedex, France
2 Department of Mathematics, University of California, Los Angeles, CA 90095, USA
@article{SLSEDP_2024-2025____A5_0,
     author = {Andreia Chapouto and Rowan Killip and Monica Vi\c{s}an},
     title = {Disproving the {Deift} conjecture: the loss of almost periodicity},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:2},
     pages = {1--12},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2024-2025},
     doi = {10.5802/slsedp.178},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.178/}
}
TY  - JOUR
AU  - Andreia Chapouto
AU  - Rowan Killip
AU  - Monica Vişan
TI  - Disproving the Deift conjecture: the loss of almost periodicity
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:2
PY  - 2024-2025
SP  - 1
EP  - 12
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.178/
DO  - 10.5802/slsedp.178
LA  - en
ID  - SLSEDP_2024-2025____A5_0
ER  - 
%0 Journal Article
%A Andreia Chapouto
%A Rowan Killip
%A Monica Vişan
%T Disproving the Deift conjecture: the loss of almost periodicity
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:2
%D 2024-2025
%P 1-12
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.178/
%R 10.5802/slsedp.178
%G en
%F SLSEDP_2024-2025____A5_0
Andreia Chapouto; Rowan Killip; Monica Vişan. Disproving the Deift conjecture: the loss of almost periodicity. Séminaire Laurent Schwartz — EDP et applications (2024-2025), Exposé no. 2, 12 p. doi : 10.5802/slsedp.178. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.178/

[B47] H. Bohr, Almost Periodic Functions. Chelsea Publishing Co., New York, N.Y., 1947.

[B93] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV equation. Geom. Funct. Anal. 3 (1993), no. 3, 209–262. | DOI | Zbl

[B1872] J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. (2) 17 (1872), 55–108. | Zbl

[BDGL18] I. Binder, D. Damanik, M. Goldstein, M. Lukic, Almost periodicity in time of solutions of the KdV equation. Duke Math. J. 167 (2018), no. 14, 2633–2678. | DOI | Zbl

[BIT11] A. V. Babin, A. A. Ilyin, E. S. Titi, On the regularization mechanism for the periodic Korteweg-de Vries equation. Comm. Pure Appl. Math. 64 (2011), no. 5, 591–648. | DOI | Zbl

[BK96] M. V. Berry, S. Klein, Integer, fractional and fractal Talbot effects. J. Mod. Optics, 43 (1996), no. 10, 2139–2164. | DOI | Zbl

[C95] D. G. Crighton, Applications of KdV. In “KdV ’95 (Amsterdam, 1995)”, Acta Appl. Math. 39 (1995), no. 1–3, 39–67. | DOI | Zbl

[CKV24] A. Chapouto, R. Killip, M. Vişan, Bounded solutions of KdV: uniqueness and the loss of almost periodicity. Duke Math. J. 173 (2024), no. 7, 1227–1267. | DOI | Zbl

[CO14] G. Chen, P. J. Olver, Numerical simulation of nonlinear dispersive quantization. Discrete Contin. Dyn. Syst. 34 (2014), no. 3, 991–1008. | DOI | Zbl

[D08] P. Deift, Some open problems in random matrix theory and the theory of integrable systems. Contemp. Math., vol. 458, Amer. Math. Soc., Providence, RI, 2008, pp. 419–430. | DOI | Zbl

[D17] P. Deift, Some open problems in random matrix theory and the theory of integrable systems, II. SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), Paper No. 016, 23 pp. | DOI | Zbl

[DG16] D. Damanik, M. Goldstein, On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data. J. Amer. Math. Soc. 29 (2016), no. 3, 825–856. | DOI | Zbl

[DLVY21] D. Damanik, M. Lukić, A. Volberg, P. Yuditskii, The Deift conjecture: a program to construct a counter-example. | arXiv | Zbl

[E94] I. E. Egorova, The Cauchy problem for the KdV equation with almost periodic initial data whose spectrum is nowhere dense. In “Spectral Operator Theory and Related Topics”, Adv. Soviet Math. 19, Amer. Math. Soc., Providence, RI, 1994, 181–208. | DOI | Zbl

[ET16] M. B. Erdoğan, N. Tzirakis, Dispersive partial differential equations. Wellposedness and applications. London Mathematical Society Student Texts, 86. Cambridge University Press, Cambridge, 2016. | DOI | Zbl

[EVY19] B. Eichinger, T. VandenBoom, P. Yuditskii, KdV hierarchy via Abelian coverings and operator identities. Trans. Amer. Math. Soc. Ser. B 6 (2019), 1–44. | DOI | Zbl

[GKO13] Z. Guo, S. Kwon, T. Oh, Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS. Comm. Math. Phys. 322 (2013), no.1, 19–48. | DOI | MR | Zbl

[K95] T. Kato, On nonlinear Schrödinger equations. II. H s -solutions and unconditional well-posedness. J. Anal. Math. 67 (1995), 281–306. | DOI | Zbl

[K21] N. Kishimoto, Unconditional uniqueness of solutions for nonlinear dispersive equations. | arXiv | Zbl

[KdV1895] D. J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. (5) 39 (1895), no. 240, 422–443. | DOI | Zbl

[KMV20] R. Killip, J. Murphy, M. Vişan, Invariance of white noise for KdV on the line. Invent. Math. 222 (2020), no. 1, 203–282. | DOI | Zbl

[KT06] T. Kappeler, P. Topalov, Global wellposedness of KdV in H -1 (𝕋,). Duke Math. J. 135 (2006), no. 2, 327–360. | DOI | Zbl

[KV19] R. Killip, M. Vişan, KdV is well-posed in H -1 . Ann. of Math. 190 (2019), no. 1, 249–305. | DOI | Zbl

[LY20] M. Lukić, G. Young, Uniqueness of solutions of the KdV-hierarchy via Dubrovin-type flows. J. Funct. Anal. 279 (2020), no. 7, Paper No. 108705, 30 pp. | DOI | Zbl

[MT76] H. McKean, E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure. Appl. Math. 29 (1976), no. 2, 143–226. | DOI | Zbl

[O92] K. Oskolkov, A class of I. M. Vinogradov’s series and its applications in harmonic analysis. In “Progress in approximation theory (Tampa, FL, 1990)", 353–402, Springer Ser. Comput. Math., 19, Springer, New York, 1992. | DOI | Zbl

[T1836] H. F. Talbot, Facts related to optical science, No. IV. Philo. Mag. 9 (1836), 401–407. | DOI

[T12] K. Tsugawa, Local well-posedness of the KdV equation with quasi-periodic initial data. SIAM J. Math. Anal. 44 (2012), no. 5, 3412–3428. | DOI | Zbl

[Z91] V. E. Zakharov (Ed.), What is integrability? Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1991. | DOI | Zbl

[ZK65] N. J. Zabusky, M. D. Kruskal, Interaction of “solitons" in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15 (1965), no. 15, 240–243. | DOI | Zbl

Cité par Sources :