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DISPROVING THE DEIFT CONJECTURE:

THE LOSS OF ALMOST PERIODICITY

ANDREIA CHAPOUTO, ROWAN KILLIP, AND MONICA VIŞAN

Abstract. In this note we present a result from [CKV24] related to a conjecture of
Deift from 2008, who posited that almost periodic initial data leads to almost periodic
solutions to the Korteweg-de Vries equation (KdV). We show that this is not always the
case. Building on the new observation that the conjecture fails for the Airy equation,
we construct almost periodic initial data whose KdV evolution remains bounded, but
loses almost periodicity at a later time. This text is based on a Laurent Schwartz seminar
given by the first author in November 2024, which in turn is based on joint work with
Rowan Killip and Monica Vişan.

1. Introduction

We consider the Korteweg-de Vries equation (KdV) on R:

∂tu+ ∂3xu = 3∂x(u
2), (KdV)

where u is a real-valued function. This equation was proposed by Boussinesq [B1872]
and Korteweg-de Vries [KdV1895] in the 19th century as a model for the propagation
of long waves in shallow-water. Since then, it has been applied to describe waves in a
variety of physical contexts in fluid dynamics, plasma physics, and acoustics; see [C95].
From an analysis viewpoint, (KdV) is a dispersive equation, that is, the velocity of a wave
packet depends on its frequency. It is also a completely integrable system with a Lax pair
formulation (see (2.2)), an infinite number of conservation laws, and an inverse scattering
transform.

The literature on the well-posedness problem for (KdV) (existence, uniqueness, and
stability) is extensive; see [KV19] for an overview. The family of L2-based Sobolev spaces
has proven to be the canonical choice for work on this problem: Hs(R) when working on
the line and Hs(R/Z) in the circle setting. The circle case is often conflated with that of
periodic initial data on the line; indeed, they would be identical but for one key question:
Must a solution with periodic initial data remain periodic (with the same period)?

This question leads us to the central theme of [CKV24]: Are structural properties of
the initial data, such as periodicity, preserved by the flow? Part of our answer is given
by Theorem 1.4 below, which shows that bounded1 solutions are unique. Thus, we may
infer that all bounded solutions with periodic data are themselves periodic, by simply
constructing one such periodic solution. The other part of our answer addresses a parallel
question of Deift: Is almost-periodicity preserved by the (KdV) flow?

Definition 1.1 (Almost-periodicity, Bohr [B47]). A function f : R → R is said to be
almost periodic and we write f ∈ AP(R), if f is continuous and for every ε > 0 there is
an Lε > 0 so that every interval of length Lε in R contains at least one ε almost period,
that is, a number ℓ ∈ R such that

∥∥f(x+ ℓ)− f(x)
∥∥
L∞(R) < ε.

1Given an open interval I ⊂ R, we say that u : I → L∞(R) is a bounded solution to (KdV) if it is
bounded, weak-∗ continuous, and it solves (KdV) distributionally.
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Any continuous periodic function is also almost periodic. The simplest example of
an almost periodic function that is not periodic is the sum of two continuous periodic
functions with incommensurate periods, for example, cos(x) + cos(

√
2x). More generally,

the sum of any two almost periodic functions is almost periodic. As we will see in Section 3,
this breaks down without the continuity hypothesis imposed by Bohr.

The notion of almost periodicity applies equally well to functions of time (rather than
space) and to functions taking values in Banach spaces. For a dynamical system to be
almost periodic in time is evidently a very strong form of recurrence. Nevertheless, just
such recurrence was observed in numerical simulations of (KdV) by Zabusky–Kruskal
[ZK65]. This empirical discovery was made rigorous for smooth solutions by McKean-
Trubowitz [MT76], and subsequently extended to L2(R/Z) and H−1(R/Z) in [B93] and
[KT06], respectively.

In [D08, D17], Deift conjectured that such almost periodicity in time extends to solu-
tions with initial data that is almost periodic (in space):

Conjecture 1 (Deift [D08, D17]). If u0 is almost periodic, then the resulting solution to
(KdV) is almost periodic in spacetime.

There are various results that support Conjecture 1 for subclasses of almost periodic
data [E94, DG16, BDGL18, EVY19, LY20], which exploit the completely integrable struc-
ture of (KdV). For example, in [E94], Egorova gave a positive answer for limit periodic
data, while [BDGL18] considers quasi-periodic data

u0(x) =
∑

n⃗∈Zd

û0(n⃗)e
i(α⃗·n⃗)x

with exponentially decaying Fourier coefficients |û0(n⃗)| ≤ e−c|n⃗| and a (quantitative)
Diophantine assumption on α⃗ (analogous to (3.7)).

However, these remarkable results provide only a partial answer to Conjecture 1. In
fact, in [DLVY21] the authors outlined an extensive program to build a counter-example
to the Deift conjecture. We present an alternative construction, which is guided by the
following observation.

Proposition 1.2. The almost periodicity conjecture fails for the Airy equation

∂tu+ ∂3xu = 0. (Airy)

Specifically, there exist u0 ∈ AP(R) and t0 ∈ R such that the solution u ∈ L∞(R× R) to
(Airy) with u(0) = u0 satisfies u(t0) ̸∈ AP(R).

Building on Proposition 1.2, we disprove Conjecture 1:

Theorem 1.3. There is a bounded solution u : [−T, T ] × R → R of (KdV) with almost
periodic initial data for which x 7→ u(t0, x) is not almost periodic at some time t0 ∈
[−T, T ].

The fundamental building blocks to show Theorem 1.3 are (1) the explicit example
constructed to prove Proposition 1.2 and (2) a new nonlinear smoothing effect for (KdV).
Nonlinear smoothing refers to the phenomenon that the difference between a solution to
a nonlinear dispersive PDE and the underlying linear evolution is smoother than each of
them individually. In particular, despite the loss of almost periodicity for the linear part
of the solution, its nonlinear part does remain almost-periodic. In this way, we see that
the failure of Conjecture 1 is a linear phenomenon and should occur for many linear and
nonlinear PDEs, independently of whether they are completely integrable.

To guarantee that the counter-example in Theorem 1.3 is the only possible evolution
arising from u0, we show uniqueness of bounded solutions, without further assumptions
of regularity or spatial asymptotics.
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Theorem 1.4. Let u1 and u2 be bounded solutions to (KdV), defined on some open
interval I ⊂ R. If u1(t0) = u2(t0) in L

∞(R) for some t0 ∈ I, then u1 ≡ u2 on I.

Theorem 1.4 can be understood as an unconditional uniqueness result, as coined by
Kato [K95], since it is independent of how solutions are constructed and does not impose
auxiliary assumptions. This appears to be the first unconditional uniqueness result for
(KdV) where only boundeness is assumed. See also [BIT11, BDGL18, LY20], which obtain
uniqueness within the classes of periodic or almost-periodic solutions.

The proof of Theorem 1.4 relies on a Gronwall argument based on a new ‘distance’
function between two (KdV) solutions. This is motivated by the integrable structure of
the equation and depends on the diagonal Green’s function associated to the Lax structure
of (KdV).

We continue this note by presenting a sketch of the uniqueness argument in Section 2.
Lastly, in Section 3, we summarize the steps needed to construct the counter-example to
the Deift conjecture in Theorem 1.3, including the proof of Proposition 1.2 for (Airy) and
the new nonlinear smoothing effect for quasi-periodic functions (Theorem 3.3).

Acknowledgements. R. K. was supported by NSF grant DMS-2452346 and M. V. was
supported by NSF grant DMS-2348018.

2. Uniqueness of bounded solutions

We first present the proof of Theorem 1.4 on uniqueness of bounded solutions. The
classical strategy to show uniqueness of solutions in Hs(R)-spaces is based on a Gronwall
argument applied to a suitable distance function between solutions. In the (KdV) setting,
the traditional argument is the following: Given two classical solutions u1, u2 to (KdV),
we have

∂t(u1 − u2)
2 = 2

(
∂3x(u1 − u2) + 6(u1∂xu1 − u2∂xu2)

)
(u1 − u2)

= 3(u1 − u2)
2∂x(u1 + u2)− ∂3x(u1 − u2)

2 + 3∂x(∂xu1 − ∂xu2)
2

+ 3∂x
[
(u1 + u2)(u1 − u2)

2
]
.

(2.1)

Integrating (2.1), we find that

∂t

∫
(u1 − u2)

2dx = 3

∫
(u1 − u2)

2∂x(u1 + u2)dx

≤ 3
[
∥∂xu1∥L∞ + ∥∂xu2∥L∞

] ∫
(u1 − u2)

2dx.

An application of Gronwall’s inequality then yields uniqueness of solutions to (KdV) that
satisfy u ∈ CtL

2
x and ∂xu ∈ L1

tL
∞
x .

Theorem 1.4 goes beyond this classical argument in two ways: it does not require spatial
decay of u, nor does it require strong spatial regularity. To achieve this strengthening, we
exploit the Lax pair formulation of (KdV) (see (2.2)) to construct a new distance function.

2.1. Diagonal Green’s function. The proof of Theorem 1.4 also relies on a Gronwall-
type argument, but based on a more effective notion of ‘distance’ between solutions,
guided by the complete integrability of (KdV). While complete integrability brings with
it a multitude of conservation laws for individual solutions, it does not provide general
tools for controlling differences of solutions. In truth, there are several competing notions
of integrability for infinite dimensional Hamiltonian systems; see [Z91]. The central figure
in our development will be the Lax pair formulation: Given u sufficiently smooth, consider
the pair of operators P and L defined via

P := −4∂3x + 2(∂xu+ u∂x) and L := −∂2x + u.

Exp. no II— Disproving the Deift conjecture: the loss of almost periodicity
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Then, we have that

u(t) solves (KdV) ⇐⇒ d

dt
L(t) = [P (t), L(t)], (2.2)

where [·, ·] denotes the commutator. The pair (P,L) is called a Lax pair for (KdV).
Although a wellposedness theory is necessary to make this rigorous, the equivalence (2.2)
shows that L(t) remains in the same conjugacy class for all times.

For u ∈ L∞(R) and κ2 ≥ 4∥u∥L∞ , the resolvent

R(κ) = (L+ κ2)−1 = (−∂2x + u+ κ2)−1

admits a continuous integral kernel G(x, y), which is known as the Green’s function.
The fundamental object in the proof of Theorem 1.4 is the diagonal Green’s function
g(x) = G(x, x). For u ∈ L∞(R) and κ2 ≥ 4∥u∥L∞ , g can be written as the absolutely
convergent series

g(x) = g(x;u, κ) :=
1

2κ
+

∞∑

ℓ=1

(−1)ℓ

(2κ)ℓ+1

∫

Rℓ

e−κ|x−x1|u(x1)

×
( ℓ−1∏

j=1

e−κ|xj−xj+1|u(xj)
)
e−κ|xℓ−x|u(xℓ)dx1 · · · dxℓ

(2.3)

and satisfies

g ∈ L∞(R), ∂xg ∈ L∞(R), and ∂2xg ∈ L∞(R). (2.4)

While (2.3) shows us how to construct g given u, there is a remarkable identity that
allows us to recover u from g, namely,

u = ∂x

[∂xg
2g

]
+
[∂xg
2g

]2
+

1

4g2
− κ2; (2.5)

see, for example, [KMV20, Lemma 2.14].
It is striking that both g and 1

g provide conserved densities for (KdV). Indeed, their

dynamical equations2 take the following conservation law form:

d

dt
g = ∂x

[
− ∂2xg +

3(∂xg)
2

2g
− 3

2g
− 6κ2g

]
,

d

dt

1

2g
= ∂x

[
− ∂2x

( 1

2g

)
+

3(∂xg)
2

4g3
+

1

4g3
− 3κ2

g

]
.

(2.6)

These equations are fundamental for carrying out the Gronwall argument described below.

2.2. Distance function and Gronwall argument. Given two bounded solutions u1, u2
to (KdV), let g1(t, x) = g1(x;κ, u1(t)) and g2(t, x) = g2(x;κ, u2(t)) be their Green’s
functions as defined in (2.3). The proof of Theorem 1.4 comprises two steps:
• Step 1: show uniqueness of the Green’s functions gj by running a Gronwall argument
for the following quantity:

∫

R

(g1 − g2)
2

2g1g2
ψRdx,

where ψR(x) := sech( xR) with R ≥ 1.

• Step 2: use the equation in (2.5) to conclude that u1 ≡ u2 from the fact that g1 ≡ g2,
as established in Step 1.

2The results in [KMV20, KV19] consider Schwartz solutions to (KdV). In [CKV24], we extend these
to bounded solutions via a mollification procedure; this leads us to consider a forced version of (KdV).
See Remark 2.1 for further details.
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Starting with Step 1, using (2.6) and considerable rearrangement, we obtain the iden-
tity[ ∫

R

(g1 − g2)
2

2g1g2
ψR dx

]
(t0)

=

∫ t0

0

∫

R

(g1 − g2)
2

2g1g2
ψR

{
− ∂3xψR

2ψR
+

3

2

∂2xψR
ψR

A2 −
3

2

∂xψR
ψR

A1 +
3

2
A0

}
dx dt

+
3

2

∫ t0

0

∫

R

g1 − g2
g1g2

∂xψRB dxdt, (2.7)

where the quantities A0, A1, A2, B are given by

A0 = −
(
∂xg1
g31

+
∂xg2
g32

)
−
(
2κ2 − ∂xg1 · ∂xg2

2g1g2

)(
∂xg1
g1

+
∂xg2
g2

)

− 2

(
u1∂xg2
g2

+
u2∂xg1
g1

)
+

1

2g1g2

(
∂xg1
g2

+
∂xg2
g1

)
,

A1 =
5

2

(
∂xg1
g1

+
∂xg2
g2

)2

− 7
∂xg1 · ∂xg2

g1g2
− 12κ2 +

3

2

(∂xg1 − ∂xg2)
2

g1g2
− 2(u1 + u2)

+

(
1

2
− 2∂xg1 · ∂xg2

)(
1

g1
− 1

g2

)2

+ 2u1
g1
g2

+ 2u2
g2
g1

+ 2κ2
(
g1
g2

+
g2
g1

)
,

A2 = −
(
∂xg1
g2

+
∂xg2
g1

)
+ 2

(
∂xg1
g1

+
∂xg2
g2

)
,

B = 2u1g1 − 2u2g2 +
(∂xg1)

2

2g1
− (∂xg2)

2

2g2
.

Despite the complicated structure of the terms above, for u1, u2 ∈ L∞(R×R), (2.4) show
that these are also in L∞(R× R)! In fact, we have the following estimates

∥A0∥L∞
t,x

≲ κ3,
∥∥∂xψR

ψR
A1

∥∥
L∞
t,x

≲ 1
Rκ

2,
∥∥∂2xψR

ψR
A2

∥∥
L∞
t,x

≲ 1
R2κ,

∥B∥L∞
t,x

≲ κ4,
∥∥∂3xψR

ψR

∥∥
L∞
t,x

≲ 1
R3 ,

(2.8)

where the implicit constants depend only on ∥∂ℓxgj∥L∞
t,x

and ∥uj∥L∞
t,x
, ℓ = 0, 1, 2 and

j = 1, 2. The main apparent obstruction for a Gronwall argument is the last contribution
in (2.7). This can be overcome by using the decay in R of |∂xψR| ≲ R−1ψR and Cauchy’s
inequality, to obtain

3

2

∫ t0

0

∫

R

g1 − g2
g1g2

∂xψRBdxdt ≲
1

εR

∫ t0

0

∫

R

(g1 − g2)
2

2g1g2
ψRdxdt+

ε

R
∥B∥L∞

t,x

∫ t0

0

∫

R
ψRdxdt

≲ 1

εR

∫ t0

0

∫

R

(g1 − g2)
2

2g1g2
ψRdxdt+ εT∥B∥L∞

t,x
, (2.9)

for 0 < ε ≤ 1 to be chosen sufficiently small.
Combining (2.7), (2.8), and (2.9), we obtain

∫

R

(g1 − g2)
2

2g1g2
(t0)ψR dx ≲

[
1

R3
+

κ

R2
+
κ2

R
+ κ3 +

1

εR

] ∫ t0

0

∫

R

(g1 − g2)
2

2g1g2
ψR dx dt+ εκ4T.

Then, taking ε = R− 1
2 , and applying Gronwall’s inequality, we conclude that
∫

R

(g1 − g2)
2

2g1g2
(t0)ψR dx ≤ C

κ4T√
R
eCT (1+κ

3),

for some constant C > 0 independent of R and κ. Taking a limit as R→ ∞, gives

g1(t0) ≡ g2(t0), (2.10)

for all 0 ≤ t0 ≤ T , i.e., uniqueness for the Green’s functions (Step 1).
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To conclude uniqueness for the (KdV) solutions (Step 2), from the identity in (2.5)
and (2.10), we have

u1 − u2 =
1

4
∂2x

{
(g1 − g2)︸ ︷︷ ︸

=0

(
1

g1
+

1

g2

)}

+
1

8
∂x

{
(g1 − g2)︸ ︷︷ ︸

=0

[
− 3∂x

(
1

g1
+

1

g2

)
− ∂xg1 + ∂xg2

g1g2

]}

+
1

8
(g1 − g2)︸ ︷︷ ︸

=0

{
−

(
1

g1
+

1

g2

)[
2(u1 + u2) + 4κ2 − 1

2

(
1

g1
+

1

g2

)2

+
3

g1g2

]

+
3

2

(
(∂xg1)

2

g31
+

(∂xg2)
2

g32

)
− 1

2g1g2

(
(∂xg1)

2

g1
+

(∂xg2)
2

g2

)}

= 0,

from which Theorem 1.4 follows.

Remark 2.1. For simplicity of presentation, we glossed over the fact that the equations
in (2.6) as derived in [KMV20, KV19] hold for Schwartz potentials u. In [CKV24], to
extend the argument to merely bounded solutions, we employ an approximation argument
via mollification and derive analogues of (2.6) for a forced (KdV) equation; this is needed
because the mollified solutions do not solve (KdV) exactly. We then establish (2.7) for
the mollified solutions unj and their corresponding Green’s functions, which after taking

limits to remove the mollification justify (2.7) for the bounded solutions u1, u2.

3. The Deift conjecture

We now sketch the ideas behind the construction of our counter-example to the Deift
conjecture. One of the simplest ways to ‘break’ almost periodicity is to exhibit disconti-
nuity. In fact, by considering the sum of two periodic but discontinuous functions with
non-overlapping periods, we obtain a discontinuous function without almost periods! We
take as a prototypical example the sum of two periodic square waves:

f(x) = sq(α1x) + sq(α2x), (3.1)

where α⃗ = (α1, α2) ∈ R2 is rationally independent:

α⃗ · n⃗ ̸= 0 for all n⃗ ∈ Z2
∗ = Z2 \ {0}, (3.2)

and for sq(x) = sgn(sin(x)).
We may then construct a counter-example to the Deift conjecture by finding almost

periodic initial data u0 whose KdV evolution at a later time is given by (3.1), which is
not almost periodic. Given the time-reversibility of (KdV) and (Airy) (that is, u(t, x) 7→
u(−t,−x) leaves the class of solutions invariant), this is equivalent with constructing a
solution with (3.1) as initial data, which exhibits almost periodicity at a later time.

The proof of Theorem 1.3 then splits into the following steps.
• Step 1: Construct a counter-example for (Airy) based on the Talbot effect. Namely,

find time t0 for which e−t0∂
3
xf is almost periodic, with f as in (3.1).

• Step 2: Construct a local-in-time solution for (KdV) with initial data f as in (3.1).
• Step 3: Establish nonlinear smoothing for (KdV) solutions with quasi-periodic3 initial
data.
• Step 4: Combine Steps 1-3 and the uniqueness of bounded solutions from Theorem 1.4.

3Here, we understand the notion of quasi-periodicity in more generality, in particular without the
assumption of continuity so that it includes data of the type (3.1).
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3.1. Linear dynamics and Talbot effect (Step 1). The main idea behind Proposi-
tion 1.2 on the failure of the Deift conjecture for (Airy) goes back to the work of Oskolkov
[O92], which we state in an informal manner:

Lemma 3.1 (Oskolkov [O92]). Fix α > 0 and a (2π/α)-periodic function f of bounded

total variation. Then, the solution e−t∂
3
xf to the Airy equation (Airy) satisfies the follow-

ing:
(i) It is a bounded function.

(ii) Given t0 ∈ R with t0α/2π ∈ R \Q, the function x 7→ [e−t∂
3
xf ](x) is continuous.

(iii) Given t0 ∈ R with t0α/2π ∈ Q, [e−t∂
3
xf ](x) is a finite superposition of translates of f .

From Lemma 3.1, given a periodic discontinuous initial data, we observe a recurrence
of its discontinuities at times which are rational multiples of the period of the initial
data. This phenomenon was observed by Talbot [T1836] in optical experiments; it is
known as the Talbot effect. Mathematically, this phenomenon is colloquially understood
as the fact that linear solutions to dispersive equations ‘can tell time’, and present distinct
behaviour at times that are rational and irrational multiples of the period of the initial
data (compare Lemma 3.1 (ii) and (iii)). See [BK96, CO14, ET16] for further details on
the Talbot effect.

The failure of the Deift conjecture for (Airy) follows from Lemma 3.1. Indeed, let f
as the sum of two square waves as in (3.1) with periods 2π/α1, 2π/α2 and α⃗ = (α1, α2)
rationally independent as in (3.2). For example, take (α1, α2) = (1,

√
2). Then, the

solution w(t) := e−t∂
3
xf to (Airy) is bounded in spacetime and it is continuous in x

for each time t0 such that α1t0/2π and α2t0/2π are both irrational. Taking one such
time, w(t0) is almost periodic (since it is the sum of 2 continuous periodic functions) but
w(0) = f is not almost periodic!

3.2. Quasi-periodic solutions and nonlinear smoothing (Steps 2–3). Given initial
data f in (3.1), we want to construct a (local-in-time) solution to (KdV) which solves the
following Duhamel formulation:

v(t) = e−t∂
3
xf + 3

∫ t

0
e−(t−s)∂3x∂x(v2)(s) ds, (3.3)

whenever 0 ≤ t ≤ T ≤ 1, where T is the short time of existence.
Note that the data f in (3.1) falls outside of the more classical well-posedness theory

on L2-based Sobolev spaces Hs. Nevertheless, local well-posedness of (KdV) for a class
of quasi-periodic4 initial data that includes f was shown by Tsugawa in [T12]. Namely,
given α⃗ ∈ R2 as in (3.2) and θ ∈ R, Tsugawa constructed solutions in the space Gθ of
functions satisfying

f(x) =
∑

n⃗∈Z2∗

f̂(n⃗)ei(α⃗·n⃗)x with ∥f∥Gθ := ∥f̂∥
Ĝθ =

∥∥∥∥
⟨n1⟩θ⟨n2⟩θ
|α⃗ · n⃗|1/2 f̂(n⃗)

∥∥∥∥
ℓ2
n⃗
(Z2∗)

<∞, (3.4)

where n⃗ = (n1, n2). This well-posedness result resorts to a quasi-periodic version of the
Fourier restriction norm method due to Bourgain [B93], based on the following norm:

∥v∥
Xθ, 12

:=
∥∥⟨τ − (α⃗ · n⃗)3⟩1/2Ft,xv(τ, n⃗)

∥∥
ĜθL2

τ
. (3.5)

Note that the initial data f in (3.1) satisfies

f ∈ Gθ for θ < 1. (3.6)

4Again, we do not impose continuity on the notion of quasi-periodicity.
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Lemma 3.2 (Tsugawa [T12]). The KdV equation is locally well-posed in Gθ with θ >
1/4 in the following sense: for each f ∈ Gθ, there exist T > 0 and a unique solution

v ∈ C
(
R;Gθ

)
∩Xθ, 1

2 of (3.3).

From Lemma 3.1, the linear contribution in (3.3) gains continuity in space for each
time t0 for which both (α1/2π)t0 and (α2/2π)t0 are irrational. To extend this property to
the full solution v to (KdV), we establish a novel nonlinear smoothing effect in the quasi-

periodic setting. This phenomenon is the property that the nonlinear part v(t)− e−t∂
3
xf

is often smoother than the linear evolution. Here, our notion of smoothness is continuity
on the full interval [−T, T ].

Theorem 3.3. Let f be as in (3.4) with α⃗ satisfying the following Diophantine condition:

|α⃗ · n⃗| ≳ |n⃗|−γ for all n⃗ ∈ Z2
∗ and some γ > 1. (3.7)

Let v ∈ C
(
R;Gθ

)
∩Xθ,1/2 be the corresponding solution of (KdV) given by Lemma 3.2.

If max{7
8 ,

γ
2} < θ < 1, then

∥∥Fx
(
v(t)− e−t∂

3
xf

)
(n⃗)

∥∥
L∞
t ℓ1

n⃗
([−T,T ]×Z2∗)

<∞. (3.8)

Consequently, for all t ∈ [−T, T ],

v(t)− e−t∂
3
xf ∈ C(R) ∩Gθ ⊂ AP(R).

The condition in (3.7) can be understood as a quantitative version of the condition
(3.2). Roth’s theorem guarantees that this is satisfied when α⃗ = (1, α2) and α2 is an
algebraic irrational number.

The proof of Theorem 3.3 relies on the structure of solutions v ∈ Xθ,1/2 and the normal
form approach. The latter, based on performing an integration by parts in time to exploit
the oscillations due to multilinear dispersion, has been extensively used to establish well-
posedness, unconditional uniqueness, and nonlinear smoothing. See [BIT11, GKO13,
ET16, K21] and references therein.

Sketch of the proof of Theorem 3.3. Let v solve (3.3) on [−T, T ], n⃗ ∈ Z2
∗, and |t| ≤ T .

From (3.3), we have

Fx
(
v(t)− e−t∂

3
xf

)
(n⃗) = 3i

∑

n⃗=n⃗(1)+n⃗(2)

ei(t−s)(α⃗·n⃗)
3
(α⃗ · n⃗)v̂(s, n⃗(1))v̂(s, n⃗(2))ds, (3.9)

where the sum is taken over all n⃗(j) = (n
(j)
1 , n

(j)
2 ) ∈ Z2

∗, j = 1, 2. By symmetry, we assume
that

|α⃗ · n⃗(1)| ≥ |α⃗ · n⃗(2)| and |n⃗(1)1 | ≥ |n⃗(1)2 |.
Then, the derivative loss from the nonlinearity can be controlled as follows:

|α⃗ · n⃗| ≲ |n(1)1 |. (3.10)

We consider 2 cases based on the size relation between the different frequencies. In

Case 1, we assume |n(1)1 | ≲ |n(1)2 | + |n(2)1 | + |n(2)2 |, which from (3.10) means that the

derivative loss α⃗ · n⃗ in (3.9) can be split between two frequencies n
(j)
ℓ , j, ℓ ∈ {1, 2}. Here,

we exploit the fact that v ∈ Xs,θ and use the bound on the time-frequency weights in the
norm (3.5),

max
{∣∣(α⃗ · n⃗)3 − τ − (α⃗ · n⃗(1))3

∣∣,
∣∣τ − (α⃗ · n⃗(2))3

∣∣} ≳
∣∣(α⃗ · n⃗)(α⃗ · n⃗(1))(α⃗ · n⃗(2))

∣∣, (3.11)
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to gain further smoothing in spatial frequency. Then, by the Cauchy-Schwarz inequality
we easily get

LHS (3.8) ≲
( ∑

n⃗∈Z2
∗

n⃗=n⃗(1)+n⃗(2)

|α⃗ · n⃗|
⟨n(1)1 ⟩2θ⟨n(1)2 ⟩2θ⟨n(2)1 ⟩2θ⟨n(2)2 ⟩2θ

)1/2

∥v∥2
Xθ,1/2 ≲ ∥v∥2

Xθ,1/2 , (3.12)

since (3.10) and the assumption on frequencies imply that |α⃗ · n⃗| ≲ |n(1)1 n
(1)
2 n

(2)
1 n

(2)
2 |1/2,

given that 2θ − 1/2 > 1 ⇐⇒ θ > 3/4.

In Case 2, we assume |n(1)1 | ≫ |n(1)2 | + |n(2)1 | + |n(2)2 |. Proceeding as in Case 1, the

derivative loss in (3.12) is only controlled by n
(1)
1 due to (3.10), which imposes 2θ − 1 >

1 ⇐⇒ θ > 1 to get (3.12). From (3.6), we see that the data of interest in (3.1) requires
θ < 1, so we need a different strategy in this regime to go beyond the restriction on θ. In

particular, we employ the interaction representation w(t) = et∂
3
xv(t) and a normal form

reduction (by performing an integration by parts in time):

e−it(α⃗·n⃗)
3
v̂(t, n⃗)− v̂(0, n⃗)

= 3

∫ t

0

∑

R
e−3is(α⃗·n⃗)(α⃗·n⃗(1))(α⃗·n⃗(2))i(α⃗ · n⃗)ŵn⃗(1)(s)ŵn⃗(2)(s) ds

= 3

∫ t

0

∑

R

d

ds

( −e−3is(α⃗·n⃗)(α⃗·n⃗(1))(α⃗·n⃗(2))

3i(α⃗ · n⃗)(α⃗ · n⃗(1))(α⃗ · n⃗(2))
)
i(α⃗ · n⃗)ŵn⃗(1)(s)ŵn⃗(2)(s) ds

=: B(t)− B(0) +N1(t) +N2(t),

where R denotes the region where n⃗ = n⃗(1) + n⃗(2) and includes the assumptions of this
case. Explicitly,

B(s) :=
∑

R
e−3is(α⃗·n⃗)(α⃗·n⃗(1))(α⃗·n⃗(2)) −1

(α⃗ · n⃗(1))(α⃗ · n⃗(2)) ŵn⃗(1)(s)ŵn⃗(2)(s),

N1(t) := 3i
∑

R

∑

n⃗(3)+n⃗(4)=n⃗(1)

∫ t

0
e−isΦ234

1

(α⃗ · n⃗(2)) ŵn⃗(2)(s)ŵn⃗(3)(s)ŵn⃗(4)(s) ds,

N2(t) := 3i

∫ t

0

∑

R

∑

n⃗(3)+n⃗(4)=n⃗(2)

e−isΦ134
1

(α⃗ · n⃗(1)) ŵn⃗(1)(s)ŵn⃗(3)(s)ŵn⃗(4)(s) ds,

(3.13)

with Φjkℓ = 3[α⃗ · (n⃗(j)+ n⃗(k))][α⃗ · (n⃗(j)+ n⃗(ℓ))][α⃗ · (n⃗(k)+ n⃗(ℓ))]. The normal form reduction

above allows us to gain the contribution |(α⃗ · n⃗)(α⃗ · n⃗(1))(α⃗ · n⃗(2))| in the denominator,
which can be seen as a gain in spatial derivatives. In the periodic case, this is always
beneficial since the analogue term would be |nn1n2| ≥ 1 for n, n1, n2 ∈ Z∗. In the quasi-

periodic setting there is the additional difficulty that 0 < |(α⃗·n⃗(j))| ≪ 1 can get arbitrarily
close to 0. It is to bypass this issue that we impose the Diophantine condition in (3.7),
which provided a lower bound on such terms.

Going back to (3.13), the boundary piece B(s) can be easily estimated in ℓ1n⃗(Z
2
∗) for

each |s| ≤ T , by applying Cauchy-Schwarz, the Diophantine condition (3.7) to lower

bound |α⃗ · n⃗(2)|, and |α⃗ · n⃗(1)| ∼ |n(1)1 |. A similar argument can be applied to N2(t), since

|α⃗ · n⃗(1)| ∼ |n(1)1 | ≥ 1.
However, this argument is insufficient to treat N1(t) because of the negative power of

|α⃗ · n⃗(2)| which can be small. To treat this term, we return to the v-variables:

N1(t) = 3i
∑

R

∑

n⃗(3)+n⃗(4)=n⃗(1)

∫ t

0
e−is(α⃗·n⃗)

3 1

(α⃗ · n⃗(2)) v̂(s, n⃗
(2))v̂(s, n⃗(3))v̂(s, n⃗(4)) ds,
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and argue in a similar fashion as in Case 1, using the fact that v ∈ Xθ,1/2 with the
following lower bound for the time-frequency weights in (3.5) as a replacement for (3.11):

max
j=2,3,4

|τj − (α⃗ · n⃗(j))3| ≳ |τ2 − (α⃗ · n⃗(2))3 + τ3 − (α⃗ · n⃗(3))3 + τ4 − (α⃗ · n⃗(4))3|

= |(α⃗ · n⃗)3 − (α⃗ · n⃗(2))3 − (α⃗ · n⃗(3))3 − (α⃗ · n⃗(4))3|
= 3|α⃗ · (n⃗(2) + n⃗(3))||α⃗ · (n⃗(2) + n⃗(4))||α⃗ · (n⃗(3) + n⃗(4))|
= |Φ234|. □

3.3. Counter-example (Step 4). Finally, we complete the proof of Theorem 1.3. Fig-
ure 1 provides a schematic of the distinct ingredients combined in the proof.

f(x) = sq(α1x) + sq(α2x) v(t0) = e−t0∂
3
xf +3

∫ t0

0
e−(t0−s)∂3x∂x(v2)(s) ds

AP(R) AP(R)

u(|t0|, x) ̸∈ AP(R) u0 ∈ AP(R)

1

2
3

4 + 5

Figure 1. Schematic of the proof of Theorem 1.3.

Let α⃗ = (α1, α2) ∈ R2 rationally independent as in (3.2) and satisfying the quantitative
version in (3.7). Moreover, let f be the sum of square waves as in (3.1), which is not almost
periodic.

1 First, by Lemma 3.2, there exists a solution v to (KdV) with v(0) = f which
satisfies the Duhamel formulation (3.3).

2 From Lemma 3.1, if t0
2π
α1

and t0
2π
α2

are irrational, then the linear part e−t0∂
3
xf is

almost periodic in space (as the sum of 2 continuous periodic functions).
3 Our nonlinear smoothing result, Theorem 3.3, guarantees that the nonlinear part

of the solution v(t0) − e−t0∂
3
xf is continuous in space and thus almost periodic

(since it is in Gθ by construction).
4 We then define our initial data u0 := v(t0) as the (KdV) solution constructed in

1 evaluated at a time t0 < 0. From time-reversibility of (KdV), there exists
a solution u : t 7→ v(t + t0) to (KdV) with u(0) = v(t0) = u0 ∈ AP(R) and
u(|t0|) = f ̸∈ AP(R), i.e., a solution that has spatial almost periodicity at the
initial time but not at a later time.

5 Lemma 3.1 and Theorem 3.3 show that u is a bounded solution to (KdV). Thus,
Theorem (1.4) shows that it is the only possible evolution arising from u0. This
completes the proof.
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