We review a series of works that address homogenization for partial differential equations with highly oscillatory coefficients. A prototypical setting is that of periodic coefficients that are locally, or more globally perturbed. We investigate the homogenization limits obtained, first for linear elliptic equations, both in conservative and non conservative forms, and next for nonlinear equations such as Hamilton-Jacobi type equations.
@article{SLSEDP_2022-2023____A1_0, author = {Claude Le Bris}, title = {Defects in homogenization theory}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:2}, pages = {1--17}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2022-2023}, doi = {10.5802/slsedp.157}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.157/} }
TY - JOUR AU - Claude Le Bris TI - Defects in homogenization theory JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:2 PY - 2022-2023 SP - 1 EP - 17 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.157/ DO - 10.5802/slsedp.157 LA - en ID - SLSEDP_2022-2023____A1_0 ER -
%0 Journal Article %A Claude Le Bris %T Defects in homogenization theory %J Séminaire Laurent Schwartz — EDP et applications %Z talk:2 %D 2022-2023 %P 1-17 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.157/ %R 10.5802/slsedp.157 %G en %F SLSEDP_2022-2023____A1_0
Claude Le Bris. Defects in homogenization theory. Séminaire Laurent Schwartz — EDP et applications (2022-2023), Talk no. 2, 17 p. doi : 10.5802/slsedp.157. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.157/
[1] Yves Achdou and Claude Le Bris, Homogenization of some periodic Hamilton-Jacobi equations with defects, 2022. | arXiv
[2] Yves Achdou, Salomé Oudet, and Nicoletta Tchou, Effective transmission conditions for Hamilton-Jacobi equations defined on two domains separated by an oscillatory interface, J. Math. Pures Appl. (9) 106 (2016), no. 6, 1091–1121. | DOI | MR | Zbl
[3] Yves Achdou and Nicoletta Tchou, Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction, Comm. Partial Differential Equations 40 (2015), no. 4, 652–693. | DOI | MR | Zbl
[4] Grégoire Allaire, Shape optimization by the homogenization method, vol. 146, Springer, New York, NY, 2002. | DOI | Zbl
[5] Arnaud Anantharaman and Claude Le Bris, A numerical approach related to defect-type theories for some weakly random problems in homogenization, Multiscale Model. Simul. 9 (2011), no. 2, 513–544. | DOI | MR | Zbl
[6] Scott Armstrong, Tuomo Kuusi, and Jean-Christophe Mourrat, Quantitative stochastic homogenization and large-scale regularity, vol. 352, Springer, Cham, 2019. | DOI | Zbl
[7] Scott N. Armstrong and Charles K. Smart, Quantitative stochastic homogenization of elliptic equations in nondivergence form, Arch. Ration. Mech. Anal. 214 (2014), no. 3, 867–911. | DOI | MR | Zbl
[8] Marco Avellaneda and Fang-Hua Lin, Compactness methods in the theory of homogenization, Commun. Pure Appl. Math. 40 (1987), no. 6, 803–847. | DOI | MR | Zbl
[9] —, Compactness methods in the theory of homogenization. II: Equations in non-divergence form, Commun. Pure Appl. Math. 42 (1989), no. 2, 139–172. | DOI | Zbl
[10] —, bounds on singular integrals in homogenization, Commun. Pure Appl. Math. 44 (1991), no. 8-9, 897–910. | DOI | Zbl
[11] Martino Bardi and Italo Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 1997, With appendices by Maurizio Falcone and Pierpaolo Soravia. | DOI | Zbl
[12] Guy Barles and Emmanuel Chasseigne, An illustrated guide of the modern approches of Hamilton-Jacobi equations and control problems with discontinuities, 2018. | arXiv
[13] Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou, Asymptotic analysis for periodic structures. Reprint of the 1978 original with corrections and bibliographical additions, Providence, RI: AMS Chelsea Publishing, 2011. | DOI | Zbl
[14] Xavier Blanc, Marc Josien, and Claude Le Bris, Local precised approximation in multiscale problems with local defects, C. R., Math., Acad. Sci. Paris 357 (2019), no. 2, 167–174. | DOI | Zbl
[15] —, Precised approximations in elliptic homogenization beyond the periodic setting, Asymptotic Analysis 116 (2020), no. 2, 93–137. | DOI | MR | Zbl
[16] Xavier Blanc and Claude Le Bris, Homogénéisation en milieu périodique... ou non : une introduction, Mathématiques & Applications, vol. 88, Springer, 2023.
[17] —, Homogenization theory for multiscale problems: an introduction, MS&A, Modeling, Simulation and Applications, vol. 21, Springer, 2023. | DOI
[18] Xavier Blanc, Claude Le Bris, and Pierre-Louis Lions, A definition of the ground state energy for systems composed of infinitely many particles, Commun. Partial Differ. Equations 28 (2003), no. 1-2, 439–475. | DOI | MR | Zbl
[19] —, A possible homogenization approach for the numerical simulation of periodic microstructures with defects, Milan J. Math. 80 (2012), no. 2, 351–367. | DOI | MR | Zbl
[20] —, Local profiles for elliptic problems at different scales: defects in, and interfaces between periodic structures, Commun. Partial Differ. Equations 40 (2015), no. 12, 2173–2236. | DOI | MR | Zbl
[21] —, On correctors for linear elliptic homogenization in the presence of local defects, Commun. Partial Differ. Equations 43 (2018), no. 6, 965–997. | DOI | MR | Zbl
[22] —, On correctors for linear elliptic homogenization in the presence of local defects: the case of advection-diffusion, J. Math. Pures Appl. (9) 124 (2019), 106–122. | DOI | MR | Zbl
[23] Xavier Blanc and Sylvain Wolf, Homogenization of the Poisson equation in a non-periodically perforated domain, Asymptotic Anal. 126 (2022), no. 1-2, 129–155. | DOI | MR | Zbl
[24] Alain Bourgeat and Andrey Piatnitski, Estimates in probability of the residual between the random and the homogenized solutions of one-dimensional second-order operator, Asymptotic Anal. 21 (1999), no. 3-4, 303–315. | Zbl
[25] —, Approximations of effective coefficients in stochastic homogenization, Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 2, 153–165. | Zbl
[26] Luis A. Caffarelli, Panagiotis E. Souganidis, and L. Wang, Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media, Comm. Pure Appl. Math. 58 (2005), no. 3, 319–361. | DOI | MR | Zbl
[27] Italo Capuzzo-Dolcetta and Pierre-Louis Lions, Hamilton-Jacobi equations with state constraints, Trans. Amer. Math. Soc. 318 (1990), no. 2, 643–683. | DOI | MR | Zbl
[28] Pierre Cardaliaguet, Claude Le Bris, and Panagiotis E. Souganidis, Perturbation problems in homogenization of Hamilton-Jacobi equations, J. Math. Pures Appl. (9) 117 (2018), 221–262. | DOI | MR | Zbl
[29] Lawrence Craig Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), no. 3-4, 359–375. | DOI | MR | Zbl
[30] Antoine Gloria, Stefan Neukamm, and Felix Otto, A regularity theory for random elliptic operators, Milan J. Math. 88 (2020), no. 1, 99–170. | DOI | MR | Zbl
[31] Antoine Gloria and Felix Otto, Quantitative results on the corrector equation in stochastic homogenization, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 11, 3489–3548. | DOI | MR | Zbl
[32] Rémi Goudey, A periodic homogenization problem with defects rare at infinity, Netw. Heterog. Media 17 (2022), no. 4, 547–592. | DOI | MR | Zbl
[33] Rémi Goudey and Claude Le Bris, Linear elliptic homogenization for a class of highly oscillating non-periodic potentials, 2022. | arXiv
[34] Michael Grueter and Kjell-Ove Widman, The Green function for uniformly elliptic equations, Manuscr. Math. 37 (1982), 303–342 (English). | DOI | MR | Zbl
[35] Cyril Imbert and Régis Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 2, 357–448. | DOI | MR | Zbl
[36] Marc Josien and Claudia Raithel, Quantitative homogenization for the case of an interface between two heterogeneous media, SIAM J. Math. Anal. 53 (2021), no. 1, 813–854. | DOI | MR | Zbl
[37] Carlos Kenig, Fanghua Lin, and Zhongwei Shen, Periodic homogenization of Green and Neumann functions, Commun. Pure Appl. Math. 67 (2014), no. 8, 1219–1262. | DOI | MR | Zbl
[38] Claude Le Bris, Mathematics for the modeling of defects in materials, Notices Amer. Math. Soc. 67 (2020), no. 6, 788–796. | DOI | MR | Zbl
[39] Claude Le Bris and Florian Thomines, A reduced basis approach for some weakly stochastic multiscale problems, Chin. Ann. Math. Ser. B 33 (2012), no. 5, 657–672. | DOI | MR | Zbl
[40] Pierre-Louis Lions, Équations elliptiques ou paraboliques, et homogénéisation précisée [Elliptic or parabolic equations and precised homogenization], Lectures at Collège de France 2013/14, https://www.college-de-france.fr/site/pierre-louis-lions.
[41] Pierre-Louis Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I & II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984), 109–145 & 223–283 (English). | DOI
[42] Pierre-Louis Lions and Panagiotis Souganidis, in Lectures at Collège de France [40].
[43] Gabriel Nguetseng, Homogenization structures and applications. I, Z. Anal. Anwend. 22 (2003), no. 1, 73–107. | DOI | Zbl
[44] George C. Papanicolaou and S. R. Srinivasa Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random fields. Rigorous results in statistical mechanics and quantum field theory, Esztergom 1979, Colloq. Math. Soc. Janos Bolyai 27, 835-873, 1981.
[45] Zhongwei Shen, Periodic homogenization of elliptic systems, Operator Theory: Advances and Applications, vol. 269, Birkhäuser/Springer, Cham, 2018. | DOI | Zbl
[46] Halil Mete Soner, Optimal control with state-space constraint. I, SIAM J. Control Optim. 24 (1986), no. 3, 552–561. | DOI | MR | Zbl
[47] Luc Tartar, The general theory of homogenization. A personalized introduction, Lect. Notes Unione Mat. Ital., vol. 7, Springer, Berlin, 2009. | Zbl
[48] Sylvain Wolf, Homogenization of the p–Laplace equation in a periodic setting with a local defect, 2022. | arXiv
[49] Vasilii V. Zhikov, Sergei M. Kozlov, and Olga A. Olejnik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994. | DOI
Cited by Sources: