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Defects in homogenization theory

Claude Le Bris∗†

Abstract

We review a series of works that address homogenization for partial
differential equations with highly oscillatory coefficients. A prototypical
setting is that of periodic coefficients that are locally, or more globally
perturbed. We investigate the homogenization limits obtained, first for
linear elliptic equations, both in conservative and non conservative forms,
and next for nonlinear equations such as Hamilton-Jacobi type equations.

1 Introduction

Consider the simple (yet ubiquitous) equation

−div (a(x/ε)∇uε(x)) = f(x), (1)

posed on a domain D of the ambient space Rd, and supplied with, say, ho-
mogeneous Dirichlet boundary condition on ∂D. The coefficient within the
divergence operator is a rescaled function a, highly oscillatory at the presum-
ably small scale ε. It is supposed to be bounded and bounded away from zero,
so that the equation is well-posed in H1

0 (D), for, say, f ∈ L2(D).
We intend to study the homogenization limit of this equation. Our impor-

tant assumption, for this purpose, is that the coefficient a is not necessarily
periodic. It does not belong either to any of the classes of functions commonly
considered in the literature of homogenization theory, such as quasi-periodic,
almost-periodic or stationary ergodic functions. In the sequel, the function a
will typically be a perturbation of a periodic function aper, in a sense that will
be made precise. Because of the relevance of this issue in materials modeling,
we call such a perturbation a defect.

Of course, under our above assumptions on the coefficient within (1), the
general theory of homogenization (see [49, 47]) applies, and we know there exists
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an homogenized limit, of the form

−div (A∗ ∇u∗(x)) = f(x), (2)

up to an extraction in ε. This compactness result, however, does not say any-
thing, in whole generality, on the homogenized coefficient A∗. It does not say
anything either on the types of convergence of uε to u∗, and a fortiori on the
rates of this convergence, in terms of ε, in suitable functional spaces.

For the particular class of perturbations we consider (which makes our co-
efficient less general than for the classical homogenization theory we have just
recalled), our purpose is to put homogenization theory for (1) on an equal foot-
ing with periodic homogenization theory for (1). More precisely, we expect to
establish convergence of the whole sequence of solutions uε to the solution u∗

of (2) and we expect the effective coefficient A∗ to be explicitly expressed in
terms of the data. We also expect to define a corrector function and to prove
that this allows convergence of uε to hold strongly in H1(D) and in other suit-
able Schauder and Sobolev spaces, once u∗ is appropriately corrected by a term
accounting for the fine scale oscillations. We finally expect to determine the
rate of the convergences in the various functional spaces.

The particular elliptic linear, divergence form equation (1) is chosen for
simplicity. Other, more sophisticated equations, such as linear elliptic equations
that are not in divergence forms, or also nonlinear equations such as Hamilton-
Jacobi type equations will also be discussed.

Let us at once make it clear that, even if (1) is linear, the question we
examine has an intrinsic nonlinear nature. We indeed focus on the nonlinear
(and in most cases also nonlocal) character of the application that maps our
input parameter a to our output solution u. This can already be illustrated
upon forcefully deleting the differential operators in (1): the application then
reads as a 7−→ u = f/a. Put differently, we are investigating how a variation in a
affects u. In this specific instance, the variation is a rescaling and a perturbation.
We note in passing that the theory we present heavily relies upon the fact that
the oscillatory coefficient aε is a fixed rescaled function a. The case of a general
coefficient aε depending differently on the small scale parameter ε is irrelevant.

Our motivation for considering such a line of work is twofold.

The first incentive is modeling in materials science (see [38] and note that
one could presumably apply the same observations to modeling in more general
physical media). It is indeed our considered opinion that theoretical and compu-
tational materials science has witnessed a major evolution in the past decades.
The major two novel features in this discipline are (a) an increasing importance
of multi-scale phenomena (with the inclusion of the micro-scale in macro-scale
simulations, both sequentially and concurrently) and (b) the consideration of
materials with microstructures that are not necessarily periodic but contain pos-
sibly random, features —defects in structures, dislocations in lattices—breaking
the idealized picture of an otherwise periodic model. Examples abound in many
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fields of the engineering sciences and life sciences that testify of this evolution:
composite materials for the aerospace industry, metallic alloys at use in nuclear
engineering, etc.

Our second incentive is purely mathematical in nature. It specifically con-
cerns PDE theory, and, to some extent, has little to do with homogenization
theory. The rescaling x → x/ε of the coefficient a in the equation (1) and its
possible perturbation from a periodic function aper to a more general function a
is nothing but a possible practical means to understand the dependency of the
solution upon the parameters of the equation. In addition, it is also likely to cre-
ate an equation (the limit equation such as (2)) from a class of equations (the
equations (1) for the family of parameters ε), possibly extending the former
class (a so-called “closure” problem —we shall see such a problem in Section 3)
and explore which structures and regularities are carried over from one scale
to another scale. It also allows (but the latter question will not be examined
in the present contribution) to consider from this specific perspective inverse
problems, where information on a is sought, based upon the observation of uε
for various parameters ε and right-hand sides f .

Given the above twofold motivation, we now present a set of works where the
common denominators are as follows. We explore the boundaries of homogeniza-
tion theory by considering coefficients beyond the idealistic setting of periodic
coefficients. When possible, we try and avoid fully general random coefficients,
which (a) are difficult theoretically and (b) given our practical considerations,
are often prohibitively expensive to address practically. We specifically consider
coefficients that are perturbations of periodic materials.

Our Section 2 exclusively concerns itself with linear equations. The results
we overview there, although necessarily partial, cover a large part of the issues
mentioned above. Our Section 3 next presents some of the first steps of a
similar mathematical endeavor put in action on some nonlinear equations, here
Hamilton-Jacobi type equations. Our final Section 4 lists a few topics that have
been left aside in our presentation, together with some pending issues in various
directions of research. We also mention both our successes and the limitations
of our results and techniques.

Most of the results overviewed in this article have been obtained in collabora-
tion with the following colleagues: Yves Achdou (Université Paris-Cité), Xavier
Blanc (Université Paris-Cité), Pierre Cardaliaguet (Université Paris-Dauphine),
Pierre-Louis Lions (Collège de France), Panagiotis Souganidis (University of
Chicago).

2 Linear elliptic equations

2.1 Our expectations

We first need to briefly recall the basics of periodic homogenization theory,
before we extend the theory to the case of perturbed periodic coefficients. When
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the possibly matrix-valued coefficient a in (1) is, say, Zd-periodic, then, as ε→ 0,
uε converges to u

∗ solution to (2). The homogenized coefficient A∗ is then given,
for 1 ≤ i, j ≤ d, by

[A∗]ij =
∫

Q

(ei +∇wei,per(y))
T
Aper(y) ej dy, (3)

whereQ = [0, 1]d is the unit cube, and where, for any p ∈ Rd, the function wp,per,
called the corrector function, also assumed a Zd-periodic function, solves the
corrector problem. The latter problem reads

−div [aper(y) (p+∇wp,per)] = 0 in Q. (4)

The success of periodic homogenization theory and its impact on practical prob-
lems is then justified by the fact that, solving the d equations (4) corresponding
to each p = ei, 1 ≤ i ≤ d, on the bounded domain Q (a task that is considered
straightforward by the metric of today’s computational technology) allows to
indeed determine the homogenized coefficient A∗ thus the homogenized limit u∗.
The “explicitness” of the expression (3) and the equation (4) is what we target
in our more general setting of perturbed periodic coefficients.

In addition, the periodic theory also allows to accurately approximate uε in
the regime of small parameters ε, using the so-called two-scale expansion

uε,1(x) = u∗(x) + ε

d∑

i=1

∂u∗

∂xi
(x)wei,per

(x
ε

)
. (5)

Rates of convergence for the difference

Rε = uε − uε,1 (6)

in various functional spaces (starting from H1(D)) are also available. We again
similarly intend to exhibit such rates of convergence in our perturbed setting.

In any event, there exists an enormous literature on homogenization theory
and we only cite here some of the most famous references in the domain, with
no claim whatsoever about exhaustiveness: [13, 49, 47, 4, 45], etc.

A substantial extension of the above periodic theory was accomplished in the
ergodic stationary setting. The homogenized limit of the same equation as (1)
but with a stationary ergodic coefficient a (x/ε, ω) also reads as (1) where this
time

[A∗]ij = E
(∫

Q

(ei +∇wei,sto(y, ·))T A (y, ·) ej dy
)
, (7)

and wp,sto(y, ω) is now the solution to the equation

−div [A (y, ω) (p+∇wp,sto(y, ω))] = 0 (8)

in the whole space Rd, with ∇wp,sto stationary and E
(∫

Q

∇wp,sto(y, ·) dy
)

= 0.
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The list of contributors to random homogenization theory is also consider-
able. We only cite here the classical works [44, 25, 24]. Some recent significant
developments appeared in [31, 30, 7, 6]. The random nonlinear setting was also
considered and one of pioneering works in this direction is [26].

Formulae (7)-(8) show that, as in the periodic setting, the homogenized
coefficient may thus be explicitly expressed. If (3) and (7) really look alike, the
striking difference between (4) and (8), however, is that the latter equation is
posed on the unbounded domain Rd. Several mathematical difficulties regarding
the well-posedness of the problem originate from this difference. This is a feature
we will also find in our perturbed periodic setting. Likewise, huge computational
difficulties also arise, but these are not our focus here. On the other hand, rates
of convergence are also a question significantly more difficult in the random
setting than in the periodic setting. In our perturbed setting, we will also
observe some flavor of this.

2.2 Intuitive description of our line of research

The brutal technique consisting in eliminating the differential operators in (1)
already used in Section 1, suggests that, in order for the entire sequence of
“solutions” uε = f/a (./ε) to weakly converge to a limit that can be explicitly
identified, it is sufficient for the function on the right hand side to admit an
average.

Our strategy has therefore been to look for classes of functions for this to
happen, with the hope (indeed often fulfilled) that the same classes will be
suitable for coefficients a in (1) and for the expected homogenization theory.

It is well known that periodic, quasiperiodic, almost periodic, stationary er-
godic, functions are all such admissible classes. On the other hand, functions
modeling a periodic background perturbed by a so-called local defect, such as
functions that read as aper +C

∞
0 , for aper a periodic function and C∞

0 denoting
the space of smooth compactly supported functions, are also convenient. Fur-
ther, some specific functions that are more global perturbations of a periodic
functions may also be used. For instance, we may be willing to consider func-
tions such as

∑
k∈Zd ψ(x − k − Zk) where Zk denotes a small displacement of

the original periodic position k.
In any event, we also learn from the consideration of uε = f/a (./ε) that we

will have to consider inverses and products of such functions. Ideally, this is a
notion of algebras and not vector spaces that is indeed relevant. We will return
to this in Section 4.

Once a suitable class of coefficients a is anticipated, the crucial task is to
establish the well-posedness of the corrector equation in that class. This is
perfectly understable in particular since our setting above is linear. Homoge-
nization theory almost reduces then to the corrector equation. The purpose is
to solve an equation analogous to (4) and next build the corresponding two-scale
expansion in the vein of (5).

Exp. no II— Defects in homogenization theory
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2.3 Existence of a suitable corrector function

In the case of our simple elliptic, linear, divergence form equation (1), the cor-
rector equation we have to solve is the analogous equation to (4), namely

−div (a(y) (p+∇w(y)) = 0, (9)

where the coefficient is a and not the periodic coefficient aper. The equation is
this time posed on the whole ambient space Rd, just as the corrector equation (8)
for the ergodic stationary case is. It is supplied with a boundary condition at

infinity that should express the strict sublinearity
w(y)

1 + |y| → 0 (this property

ensures that the rightmost term in (5) is indeed a correction to the leading
term). In the absence of any structure, we are unaware of any approach that
allows to establish existence for equation (9).

One may indeed realize that, in the ergodic stationary case, as well as in
all the related (periodic, quasiperiodic, almost periodic) settings, the proof of
existence relies upon a reinterpretation of the equation (9) that explicitly uses
the structure of the coefficient. Put differently, the equation is lifted from an
equation on the space Rd to an equation solved on the torus, or, say, on the
abstract probability space. In all such settings, some type of “compactness”,
originally absent from the equation posed in Rd is reinstated. A possible alter-
native perspective on this difficulty is to express that, in all the above settings,
it is possible to pass from an estimate on large balls to a local estimate. The
most natural estimate on approximated solutions are obtained on average, and,
precisely because of the structure imposed, they translate into local estimates
that in turn allow to pass to the limit, at least in the sense of distributions, in
the sequence of regularizations.

In our own setting, we are going to also impose a structure on the coeffi-
cient a. We consider

a = aper + ã, (10)

where aper denotes the unperturbed, periodic background, and ã denotes the
perturbation, which belongs to a Lebesgue space, that is

ã ∈ Lr(Rd), for some 1 ≤ r < +∞. (11)

Since we are also going to assume, in most cases, that ã is (uniformly) Hölder
continuous, this global integrability implies that ã vanishes at infinity. The
defect we consider is therefore, in that sense, local. Evidently, our setting is an

over-simplification of the much more practically relevant condition ã
|x|→∞−→ 0 (a

condition that is reminiscent of the space aper +C∞
0 we were mentioning in the

previous section). We are indeed unable to proceed in the full mathematical
generality of the latter condition.

Given (10)-(11), it is anticipated that the homogenized equation obtained
is identical to that for the periodic coefficient aper. Intuitively, the reason is,
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the coefficient ã does not contribute to averages over large balls. The detailed
mathematical study indeed confirms that the homogenized limit is the periodic
one.

The key task is, on the other hand, to solve the corrector equation (9). It is
readily seen, introducing w̃p = wp − wp,per where wp,per is the solution to (4),
that the suitable functional class where to look for w̃p is such that ∇w̃p ∈
Lr(Rd).

The work [19] contains a first theoretical study in the case r = 2, along with
some computational illustrations. On the one hand, the proof of existence of the
corrector function, solution to (4) for (10) and (11) with r = 2, is performed on
the basis of arguments only relevant in this Hilbertian setting. In addition, it is
observed there, numerically, that a two-scale expansion of the type (5) employing
the periodic corrector wp,per does not provide an accurate approximation at the
vicinity of the defects, that is the region where ã is large. On the other hand, the
same expansion with wp instead of wp,per reinstates everywhere in the domain
the quality of approximation observed in the absence of defect.

The general case of a defect ã ∈ Lr(Rd), for r not necessarily equal to 2, was
next addressed in the work [20]. We prove there the

Theorem [Lr-perturbation of a periodic coefficient, [20]] : Assume
periodicity of the background coefficient aper and (coercivity, boundedness and)
Hölder regularity of both aper and a. Then, the corrector problem has a unique
solution wp, up to the addition of a constant. Moreover, wp = wp,per + w̃p,
where wp,per is the periodic corrector and

• if 1 ≤ r < d, then, lim
|x|→+∞

w̃p(x) = 0 ;

• if 2 ≤ r, then ∇w̃p ∈ Lr(Rd).

The proof of this theorem performed in [20] uses estimates of the Green
function on dyadic rings. The corrector equation is written under the form

−div (aper ∇w̃p) = div (ã∇w̃p) + div (ã (p+∇wp,per)) . (12)

This isolates in the left-hand side the operator with periodic coefficients for
which the fundamental results established by M. Avellaneda and F.-H. Lin,
in [8, 9, 10] are then used.

A more general and versatile proof of the same result was then presented
in [21]. Since the corrector equation also reads as

−div (a∇w̃p) = div (ã (p+∇wp,per)) , (13)

it is immediate to see that proving the existence and uniqueness (up to the
addition of a constant) of the corrector function w̃p amounts to establishing the
following (Calderón-Zygmund theory type) estimate

−div (a∇u) = div (f) ⇒ ∥∇u∥Lq(Rd) ≤ Cq ∥f∥Lq(Rd) (14)

Exp. no II— Defects in homogenization theory
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for the coefficient a = aper + ã and ã ∈ Lr(Rd). The result is then readily
applied to f = ã (p+∇wp,per) and q = r.

We indeed show that such an estimate (14) holds true using the (locally
compact version of the) concentration-compactness principle [41] to reduce the
problem to the periodic result of [10]. A quick outline of the proof goes as follows.
Contradict (14) assuming the existence of two sequences ∇un ∈ Lq(Rd) such
that ∥∇un∥Lq(Rd) = 1 and fn ∈ Lr(Rd) such that ∥fn∥Lq(Rd) → 0 as n → +∞,

while −div (a∇un) = div (fn) for all n ∈ N. If all the mass of ∇un escapes
at infinity, then the product ã∇un vanishes at infinity (since ã itself vanishes
there in some loose sense). The product term a∇un on the left-hand side
of the equation thus behaves like aper ∇un. This then contradicts the estimate
analogous to (14) for the periodic operator, which we know is true by the results
of [10]. On the other hand, if some mass of ∇un remains at finite distance from
the origin, then we now essentially contradict the estimate on a bounded domain.
But that estimate is again true using standard arguments. Thus the result.

The flexibility of the above strategy of proof allows it to carry over to other
elliptic linear equations than (1), namely equations that are not in divergence
form, or advection-diffusion type equations. The details may be found in [21, 22].

2.4 Rates of convergence

Once the existence of a suitable corrector function wp is established, we may
use this function to construct a two-scale approximation (5) of the solution uε
for sufficiently small ε and study the rate of convergence of the remainder Rε

defined in (6). Our main result in this direction is the following.

Theorem [14, 15]: Assume d ≥ 3, r ̸= d and ã ∈ Lr(Rd). Take a = aper+ã
with the usual properties of ellipticity and Hölder regularity. Consider a right-
hand side f ∈ L2(Ω), a strict subdomain Ω1 ⊂⊂ Ω and the residual

Rε = uε − u∗ − ε

d∑

i=1

∂iu
∗(·)wi(·/ε).

Then
∥∇Rε∥L2(Ω1) ≤ Cεmin(1,d/r) ∥f∥L2(Ω).

When in addition f ∈ Lq(Ω) for q ≥ 2, we have

∥∇Rε∥Lq(Ω1) ≤ Cεmin(1,d/r) ∥f∥Lq(Ω)

If f is Hölder continuous, then

∥∇Rε∥L∞(Ω1) ≤ Cεmin(1,d/r)
(
1 + | ln ε−1|

)
∥f∥C0,β(Ω).

The proof follows the same pattern as those by M. Avellaneda and F.-H. Lin
in [8, 9, 10] and by C. Kenig and coll. in [37] in the periodic case. It combines
the following five main ingredients:
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1. the differential operator Lε in (1) converges to the constant coefficient
homogenized operator L∗ in (2), thus the properties of the latter operator
also hold for the former operators when ε is small

2. a general estimate of the Green function Gε(x, y) of the operator Lε es-
tablished by M. Grueter and K.-O. Widman in [34] and for which only
ellipticity of the operator is needed

3. an estimate of the derivatives ∂xGε(x, y) and ∂x∂yGε(x, y), for which, this
time, the specific structure of the coefficient is needed

4. an estimate of the rate of convergence of Rε for a regular right-hand side

5. an argument by duality for the convergence of Gε(x, y)−G∗(x, y) (where G∗

is the Green function associated to L∗).

3 Some nonlinear equations

3.1 A striking difference

One of our first observations when studying coefficients of the form (10)-(11) was
that the homogenized equation obtained would then be equal to that obtained
in the absence of perturbation. Our intuition was then driven by formal argu-
ments about averages of functions over large balls. The result is also intuitive
because, in a diffusion equation such as (1), there are all reasons to think that
local microscopic defects do not percolate at the macroscale. They only matter
when zooming in microscopically. The above two assertions are mathematically
translated into the fact that the homogenized equation remains unperturbed
while the corrector equation is different.

Figuratively speaking, we may express this upon claiming that an elliptic
equation is very forgiving. But not all equations are...

In order to emphasize the difference of behavior between different categories
of equations, let us consider the following one-dimensional, simple, first-order
Hamilton-Jacobi equation

uε + |(uε)′| = Ṽ (x/ε) in R. (15)

This equation should be understood as the original unperturbed equation uε +
|(uε)′| = Vper(x/ε) specifically considered for a null periodic potential Vper = 0

and that is subsequently perturbed by the potential Ṽ . In this new language,
the potentials Vper and Ṽ respectively play the role of our coefficients aper and ã
of the previous section.

In the absence of perturbation, the equation admits the only trivial solu-
tion uε = 0 and therefore homogenizes in the same equation u+ |u′| = 0. With

a perturbation Ṽ , interesting phenomena appear.
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If, for instance (and for simplicity), Ṽ is a nonpositive, compactly supported

potential such that Ṽ (0) = infR Ṽ < 0, then it may be easily shown (in fact ex-

plicitly exhibiting uε analytically) that uε converges uniformly to ū = Ṽ (0)e−|x|,
solution to {

ū(x) + |(ū)′(x)| = 0 ∀x ̸= 0,

ū(0) = Ṽ (0).
(16)

Obviously, the limiting equation as ε → 0 is thus different from the trivial
equation u+ |u′| = 0. But, more importantly and interestingly enough, (16) is
not a differential equation on the real line, but only two separate equations of
the half-lines, combined to one another using a Dirichlet type condition at the
origin. Put differently, the defect Ṽ macroscopically (and tremendously) affects
the homogenized limit.

Even more interestingly, it might be the case, with a different “alignment
of planets” and in the same equation, that the defect does not at all affect the
homogenized equation. It suffices to now consider a nonnegative perturbation Ṽ
(still smooth and compactly supported, for simplicity). In that case, and in
sharp contrast with the former situation, an argument equally simple as the
previous one shows that the solution uε then converges to u = 0, the solution
to u+ |u′| = 0. The defect does not show up in the homogenized equation.

In a nutshell, defects in elliptic equations are somewhat harmless (they only
matter after the dominant order) and are all about averages. Defects in hyper-
bolic equations are more treacherous, and, specifically for problems that take
root in control theory (and the above first order Hamilton-Jacobi equation is
one such problem), are all about infimums.

In the sequel of this section, we only consider the homogenized equation.
In one particular case of the setting we consider, this homogenized equation
itself is modified. Should it not be the case, that is when the homogenized
equation remains identical to that of the periodic case and the perturbation
only interferes at the next order (an option closer to that of the linear case we
have studied in Section 2), the result we establish has to be complemented by
some other results regarding the corrector equation specifically. Such results
have been obtained by P.-L. Lions and P. Souganidis in [40, 42].

3.2 A result for some first order Hamilton-Jacobi equa-
tions

In the work [1], we have considered the following general class of first order
Hamilton-Jacobi equations

uϵ +H (x/ϵ,Duϵ) = 0 in Rd, (17)

where the Hamiltonian H, which has all the usual nice properties in terms of
regularity, convexity and coerciveness, is the perturbation of a periodic Hamil-
tonian Hper by a local defect. For simplicity, one may think of H(y, p) =

Hper(y, p) − Ṽ (y).

Claude Le Bris
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We have then established the following result.

Theorem [1]
As ϵ→ 0, the solution uϵ converges locally uniformly to the unique bounded,

uniformly continuous function u defined by:

• u is a viscosity solution of

u+Hper(Du) = 0 in Rd \ {0},

with Hper defined by periodic homogenization.

•
u(0) ≤ −E, (18)

where E is the ergodic constant, or effective Dirichlet datum.

If ϕ ∈ C1(Rd) is such that u− ϕ has a local maximum at the origin, then

u(0) +Hper(Dϕ(0)) ≤ 0. (19)

• If ϕ ∈ C1(Rd) is such that u− ϕ has a local minimum at the origin, then

u(0) + max
(
E,Hper(Dϕ(0))

)
≥ 0. (20)

The ergodic constant E appearing in the statement of the above theorem is
defined in the course of the proof of this theorem. Somewhat more precisely,
its definition proceeds as follows. We first consider the approximate/truncated
corrector problem

λwλ,R +H(y,Dwλ,R) = 0 in B(0, R),

with suitable, so called “state-constrained” boundary conditions on ∂B(0, R)
(see [27, 46]). As λ → 0, the difference wλ,R − wλ,R(0) can then be shown to
converge to some function wR, viscosity solution of

H(y,DwR) ≤ ER in B(0, R),

H(y,DwR) ≥ ER in B(0, R).

Then the ergodic constant is defined as E = limR→∞ER, the sequence ER

being proven monotonic. Once the ergodic constant is defined, the proof of
the homogenization limit makes use of the classical perturbed test functions
method [29] adjusted to the case at hand. It also uses several techniques from the
control theoretic interpretation of the problem, see [11] for a general exposition
on the subject.

In view of the condition (20), it is clear that the defect affects, or not, the
homogenized equation itself, depending upon whether

E > min
p∈Rd

Hper(p) or not.
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This condition in turn depends, say in a simple setting such as that we intro-
duced in Section 3.1, on the “sign” of defect. We of course easily recognize the
specific results of Section 3.1 in the general statements of the above Theorem.
In particular then, Hper(p) = |p| and E = −Ṽ (0).

The statement of the above Theorem illustrates the relation of the problem
considered with some previous works on Hamilton-Jacobi equations on heteroge-
neous structures (networks, stratified media, ...), such as the works by Y. Achdou
and N. Tchou [3, 2], G. Barles [12], N. Forcadel, C. Imbert [35], all together
with their respective collaborators.

4 Some topics left aside and some questions for
future research

A general recollection of the works performed and of most of the issues related
to those overviewed in this article may be found in the textbooks [16, 17].
Nevertheless, we would like to mention in this final section a few issues that
have been omitted in the previous three sections.

The case of a localized defect, vanishing at infinity in some loose sense such
as (10)-(11) and inserted in an elliptic equation, is one among many that may
be considered, even in the setting of linear equations of Section 2 only. In [20],
were also considered some prototypical interface problems where two different,
incommensurable periodic structures are separated by a flat interface, that is

aper(x) = aper,1,2(x) =

{
aper,1(x) when x1 ≤ 0,
aper,2(x) when x1 > 0.

This setting is the mathematical formalization of the physically relevant problem
of twin-boundaries. After [20], it was more thoroughly explored by M. Josien
and C. Raithel in [36].

The defects may also affect the geometry of the domain itself, as is the
case for domains with nonperiodic arrays of perforations, a case studied in the
works [23, 48] by X. Blanc and S. Wolf.

Another option is to study periodic coefficients that are perturbed by defects
that are not vanishing at infinity but that are only “rare” at infinity. This is
the case of the work [32] by R. Goudey.

In the context of the Hamilton-Jacobi equations approached in Section 3,
it is worth mentioning that other geometries (defects on interfaces, etc) and
extensions to viscous Hamilton-Jacobi equations are yet to be considered.

In both the linear and the nonlinear settings, some randomized variants of
the problems with defects may also be studied. In short, the defects are then
supposed to appear with a certain probability and the homogenized problems
obtained are then identified. Such a setting may be seen as a compromise
between a somehow idealistic scenario of a deterministic set of defects and a
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prohibitively computationally expensive and theoretically demanding general
random setting. Examples of research efforts in this direction are [5, 39] in the
linear elliptic case and [28, 1] in the Hamilton-Jacobi case.

But more generally speaking, we would like to conclude this review upon
mentioning that all the settings considered are particular examples or variants of
a general theory that we were originally aiming at developing for homogenization
problems.

The underlying formalism for the theory was originally introduced in [18] in a
slightly different (but intrinsically related) context, that of thermodynamic limit
problems. It all starts from the consideration of a suitable set of points {Xk}Zd ,
distributed over the ambient space Rd, that are not necessarily arranged in a
periodic array, but that are sufficiently well organized geometrically. Prototyp-
ical functions are constructed using translations along this set of points, that

is functions of the form
∑

k∈Zd

ψ(x − Xk) for ψ ∈ C∞
0 (Rd). If some adequate

geometric conditions such as





♯{Xk ∈ B} ∝ volume (B)
♯{Xk −Xk′ ≈ L} controlled, for allL
♯{(Xk, Xk′ , Xk′′)} ...

(21)

ruling the correlations of these points are imposed, then it is possible to then con-
struct some algebras A of functions that have interesting averaging properties.
Omitting some technicalities, the question of developing an homogenization the-
ory for (say) equations of the form (1) with coefficients a in such an algebra A,
then reduces to establishing the existence of a solution wp to the corrector equa-
tion (9) that satisfies ∇wp ∈ A and has zero average in this algebra. A related
line of thought is presented in [43] and other works by the same author and
his collaborators, where some algebras for homogenization theory are also con-
structed. The corrector equation (9) is however then solved in a sense different
from the sense of distribution. We therefore cannot use a similar construction
in our own endeavor. In the absence of a general strategy for solving this ques-
tion, we have only been able to consider some specific instances of this general
problem. The most recent example in this line of research is the work [33] where
homogenization of the Schrödinger equation −∆uε + ε−αV (./ε)uε = f is con-
sidered for a general class of highly oscillatory potentials V constructed using a
set of points Xk as above.
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