This is a review based on the presentation done at the seminar Laurent Schwartz in December . It is announcing results in the forthcoming [MMM22]. This work presents a new simple quantitative method for proving the hydrodynamic limit of a class of interacting particle systems on lattices. We present here this method in a simplified setting, for the zero-range process and the Ginzburg-Landau process with Kawasaki dynamics, in the parabolic scaling and in dimension . The rate of convergence is quantitative and uniform in time. The proof relies on a consistence-stability approach in Wasserstein distance, and it avoids the use of both the so-called “block estimates”.
@article{SLSEDP_2021-2022____A10_0, author = {Angeliki Menegaki and Cl\'ement Mouhot}, title = {A consistence-stability approach to hydrodynamic limit of interacting particle systems on lattices}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:7}, pages = {1--15}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2021-2022}, doi = {10.5802/slsedp.154}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.154/} }
TY - JOUR AU - Angeliki Menegaki AU - Clément Mouhot TI - A consistence-stability approach to hydrodynamic limit of interacting particle systems on lattices JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:7 PY - 2021-2022 SP - 1 EP - 15 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.154/ DO - 10.5802/slsedp.154 LA - en ID - SLSEDP_2021-2022____A10_0 ER -
%0 Journal Article %A Angeliki Menegaki %A Clément Mouhot %T A consistence-stability approach to hydrodynamic limit of interacting particle systems on lattices %J Séminaire Laurent Schwartz — EDP et applications %Z talk:7 %D 2021-2022 %P 1-15 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.154/ %R 10.5802/slsedp.154 %G en %F SLSEDP_2021-2022____A10_0
Angeliki Menegaki; Clément Mouhot. A consistence-stability approach to hydrodynamic limit of interacting particle systems on lattices. Séminaire Laurent Schwartz — EDP et applications (2021-2022), Talk no. 7, 15 p. doi : 10.5802/slsedp.154. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.154/
[DMOWa] D. Dizdar, G. Menz, F. Otto, and T. Wu. The quantitative hydrodynamic limit of the Kawasaki dynamics. | arXiv
[DMOWb] D. Dizdar, G. Menz, F. Otto, and T. Wu. Toward a quantitative theory of the hydrodynamic limit. | arXiv
[Fat13] M. Fathi. A two-scale approach to the hydrodynamic limit part II: local Gibbs behavior. ALEA Lat. Am. J. Probab. Math. Stat., 10(2):625–651, 2013. | Zbl
[GOVW09] Ñ. Grunewald, F. Otto, C. Villani, and M. Westdickenberg. A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit. Ann. Inst. Henri Poincaré Probab. Stat., 45(2):302–351, 2009. | DOI | MR | Zbl
[GPV88] M. Z. Guo, G. C. Papanicolaou, and S. R. S. Varadhan. Nonlinear diffusion limit for a system with nearest neighbor interactions. Comm. Math. Phys., 118(1):31–59, 1988. | DOI | MR | Zbl
[KL99] C. Kipnis and C. Landim. Scaling limits of interacting particle systems, volume 320 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1999. | DOI | Zbl
[Lig85] T. Liggett. Interacting Particle Systems. Springer Berlin Heidelberg, 1985. | DOI | Zbl
[LPY02] C. Landim, G. Panizo, and H. T. Yau. Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems. Ann. Inst. H. Poincaré Probab. Statist., 38(5):739–777, 2002. | Zbl
[LSV96] C. Landim, S. Sethuraman, and S. Varadhan. Spectral gap for zero-range dynamics. Ann. Probab., 24(4):1871–1902, 1996. | DOI | MR | Zbl
[LY93] Sheng Lin Lu and Horng-Tzer Yau. Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Comm. Math. Phys., 156(2):399–433, 1993. | DOI | MR | Zbl
[MMM22] D. Marahrens, A. Menegaki, and C. Mouhot. Quantitative hydrodynamic limit of interacting particle systems on lattices. soon on the ArXiv, 2022.
[Rez91] F. Rezakhanlou. Hydrodynamic limit for attractive particle systems on . Comm. Math. Phys., 140(3):417–448, 1991. | DOI | Zbl
[Yau91] H.-T. Yau. Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys., 22(1):63–80, 1991. | DOI | MR | Zbl
Cited by Sources: