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A CONSISTENCE-STABILITY APPROACH TO HYDRODYNAMIC

LIMIT OF INTERACTING PARTICLE SYSTEMS ON LATTICES

ANGELIKI MENEGAKI AND CLÉMENT MOUHOT

Abstract. This is a review based on the presentation done at the seminar
Laurent Schwartz in December 2021. It is announcing results in the forthcom-

ing [MMM22]. This work presents a new simple quantitative method for proving

the hydrodynamic limit of a class of interacting particle systems on lattices. We
present here this method in a simplified setting, for the zero-range process and

the Ginzburg-Landau process with Kawasaki dynamics, in the parabolic scaling

and in dimension 1. The rate of convergence is quantitative and uniform in time.
The proof relies on a consistence-stability approach in Wasserstein distance, and

it avoids the use of both the so-called “block estimates”.
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1. The general method

We consider the hydrodynamic limit of interacting particle systems on a lattice.
The problem is to show that under an appropriate scaling of time and space, the
local particle densities of a stochastic lattice gas converge to the solution of a macro-
scopic partial differential equation. We first present our method abstractly and then
sketch applications to three concrete models: the simple-exclusion process (SEP), the
zero-range process (ZRP) and the Ginzburg Landau process with Kawasaki dynamics
(GLK). The hydrodynamic limit is known at a qualitative level for all these models un-
der both hyperbolic and parabolic scalings for the SEP and ZRP and under parabolic
scaling for the GLK, see [GPV88, Yau91, Rez91, KL99]. However finding quantitative
error estimates had remained an important opened question, as well as understanding
the long-time behaviour of the hydrodynamic limit. First results towards quantitative
error, in the particular case of the Ginzburg-Landau process with Kawasaki dynam-
ics in dimension 1, were obtained in the two-parts work [DMOWa, DMOWb], which
builds upon partial progresses in [GOVW09].

1.1. Set up and notation. We denote by X the state space at a given site (number
of particles, spin, etc.), which will in this paper be N (ZRP) or R (GLK). Consider
the discrete torus Td

N and the corresponding phase space of particle configurations

XN := XTd
N . Variables in Td

N are called microscopic and denoted by x, y, z, whereas
variables in the limit continuous torus Td are called macroscopic and denoted by u;
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finally particle configurations in XN are denoted by η. The canonical embeddding
Td
N → Td, x 7→ x/N means the macroscopic distance between sites of the lattice is

1/N . Given a particle configuration η ∈ XN , we define the empirical measure

(1.1) αN
η :=

∑

x∈Td
N

ηxδx/N ∈ M+(Td).

where ηx denotes the value of η at x ∈ Td
N , and M+(Td) is the space of positive

Radon measures on the torus, and
∑

denotes the “average sum”, here N−d
∑

x∈Td
N
.

At the microscopic level, the interacting particle system evolves through a sto-
chastic process and the time-dependent probability measure describing the law of η
is denoted by µN

t ∈ P (XN ). We consider a linear operator LN : Cb(XN ) → Cb(XN )
generating uniquely a Feller semigroup etLN on P (XN ) (see [Lig85, Chapter 1]) so
that given µN

0 ∈ P (XN ) the solution µN
t = etLNµN

0 ∈ P (XN ) satisfies

(1.2) ∀Φ ∈ Cb(XN ),
d

dt
⟨Φ, µN

t ⟩ = ⟨LNΦ, µN
t ⟩,

where Cb(XN ) denotes continuous bounded real-valued functions and ⟨·, ·⟩ denotes the
duality bracket between Cb(XN ) and P (XN ).

At the macroscopic level, we consider a map L∞ : M+(G∞) → M+(G∞) (in gen-
eral unbounded and nonlinear) and the evolution problem

(1.3) ∂tft = L∞ft, ft=0 = f0.

A measure µN ∈ P (XN ) is called invariant for (1.2) if

∀Φ ∈ Cb(XN ),
〈
µN ,LNΦ

〉
= 0.

We also denote Lip(XN ) the Lipschitz functions Φ : XN → R with respect to the
(normalised) ℓ1 norm: for every η, ζ ∈ XN , |Φ(η)− Φ(ζ)| ≤ CΦ

∑
x∈Td

N

|ηx − ζx|, and
we denote the smallest such constant CΦ by [Φ]Lip(XN ) ∈ R+.

1.2. Abstract assumptions. We make the following assumptions on (1.2)-(1.3):

(H0) Local equilibrium structure. There are nλ : Conv(X) → R+ depending on

λ ∈ R (Conv denotes the convex hull) and σ : Conv(X) → R so that: (i) n
⊗Td

N

λ is
invariant on XN for each λ, and (ii) for any ρ ∈ Conv(X), Enσ(ρ)

[ηx] = ρ. We then

define, given a macroscopic profile f on Td, the local Gibbs measure

ϑN
f (η) := νN

σ(f( ·
N ))(η) where νNF (η) :=

∏

x∈GN

nF (x)(η(x)).

The two maps η 7→ αN
η and f 7→ ϑN

f allow comparisons between the microscopic
and macroscopic scales, as summarized in Figure 1.

P (XN) P (M+(G∞))
αNη

M+(G∞)

δf (atomic)ϑNf

Figure 1. The functional setting.
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(H1) Microscopic stability. The semigroup etLN satisfies

∀Φ ∈ Lip(XN ),
[
etLNΦ

]
Lip(XN )

≤ [Φ]Lip(XN ) .(1.4)

(H2) Macroscopic stability. There is a Banach space B ⊂ M+(G∞) so that (1.3)
is locally well-posed in B; given the maximal time of existence Tm ∈ (0,+∞] we
denote for t ∈ [0, Tm), R(t) := ∥ft − f∞∥B when (1.3) has a unique stationary solution
f∞ ∈ B with mass

∫
Td f∞ =

∫
Td f0, otherwise we denote R(t) := ∥ft∥B.

(H3) Consistency. There is a consistency error ϵ(N) → 0 as N → ∞ so that for
T ∈ [0, Tm)

1

T

∫ T

0

∫ t

0

〈(
e(t−s)LNΦ

)
,

[
L∗
N

(
dϑN

fs

dνN∞

)
− d

ds

(
dϑN

fs

dνN∞

)]
dνN∞

〉
dsdt

≤ ϵ(N)[Φ]Lip(XN )

∫ t

0

R(s) ds

for any Φ ∈ Lip(XN ), where νN∞ is an equilibrium measure.

1.3. The abstract strategy.

Theorem 1.1. Consider (1.2)-(1.3) with the assumptions (H0)–(H1)–(H2)–(H3).
Let ϕ ∈ C∞(Td), µN

0 ∈ P1(XN ) for all N ≥ 1, f0 ∈ B. Then
(1.5)

∀T ∈ [0, Tm),
1

T

∫ T

0

∥∥µN
t − ϑN

ft

∥∥
Lip∗ dt ≲ ϵ(N)

∫ T

0

R(s) ds+
∥∥µN

0 − ϑN
f0

∥∥
Lip∗ .

Remark 1. Note that ∥µN
t − ϑN

ft
∥Lip∗ → 0 as N → ∞ implies that the empirical

measure (1.1) sampled from the law µN
t satisfies

(1.6) ∀ϕ ∈ Cb(G), ∀ ϵ > 0, ∀ t ≥ 0, lim
N→∞

µN
t

({
|⟨αN

η , φ⟩ − ⟨ft, φ⟩| > ϵ
})

= 0

with a rate of convergence (thus recovering quantitatively results from [GPV88]):

µN
t

({
|⟨αN

η , φ⟩ − ⟨ft, φ⟩| > ϵ
})

≤ µN
t

({
⟨αN

η , φ⟩ ≥ ⟨ft, φ⟩+ ϵ
})

+ µN
t

({
⟨αN

η , φ⟩ ≤ ⟨ft, φ⟩ − ϵ
})

≤
∫

XN

[
F+
ϵ

(〈
ϕ, αN

η

〉)
− F+

ϵ (⟨ϕ, ft⟩)
]
dµN

t +

∫

XN

[
F−
ϵ

(〈
ϕ, αN

η

〉)
− F−

ϵ (⟨ϕ, ft⟩)
]
dµN

t

where F±
ϵ are mollified version of the characteristic functions of respectively {z ≥

⟨ϕ, ft⟩+ ϵ} and {z ≤ ⟨ϕ, ft⟩ − ϵ}, which yields

sup
t∈[0,T ]

µN
t

({
|⟨αN

η , φ⟩ − ⟨ft, φ⟩| > ϵ
})

≲ ϵ−1∥µN
t − ϑN

ft∥Lip∗ + ϵ−2N−d.

2. Concrete applications

We apply the abstract result to two archetypical models, the zero-range process
(ZRP), and the Ginzburg-Landau process with Kawasaki dynamics (GLK).

2.1. The ZRP. In this case, the state space at each site is X = N. Given the choice of
a transition function p ∈ P (Td

N ) with p(0) = 0 and a jump rate function g : N → R+,

the base generator L̂N writes

(2.1) ∀Φ ∈ Cb(XN ), ∀ η ∈ XN , L̂NΦ(η) :=
∑

x,y∈Td
N

p(y − x)g(ηx) [Φ(η
xy)− Φ(η)]
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where ηxy is defined as before. The local equilibrium structure of (H0) is given by

nλ(k) :=
λk

g(k)!Z(λ)
with Z(λ) :=

+∞∑

k=0

λk

g(k)!
(2.2)

σ is defined implicitely by σ(ρ)
Z ′(σ(ρ))
Z(σ(ρ))

≡ ρ(2.3)

denoting g(k)! := g(k)g(k − 1) · · · g(1). The pair (g, σ) thus constructed satisfies
Enσ(α)

[g] = σ(α). When f ≡ ρ ∈ [0,+∞) is constant, the local Gibbs measure

ϑN
ρ = νNσ(ρ) is invariant with average number of particles ρ. The mean transition rate

is defined by γ :=
∑

x∈Zd xp(x) ∈ Rd. When γ ̸= 0, the first non-zero asymptotic

dynamics as N → ∞ is given by the hyperbolic scaling LN := N L̂N , and the corre-
sponding expected limit equation is ∂tf = γ ·∇[σ(f)]. When γ = 0, the first non-zero

asymptotic dynamics as N → ∞ is the given by the parabolic scaling LN := N2L̂N ,
and the corresponding limit equation is formally

(2.4) ∂tf = ∆a[σ(f)] with ∆a :=

d∑

i,j=1

aij∂
2
ij and aij :=

∑

x∈Zd

p(x)xixj .

We make the following assumptions on the jump rate function g : N → [0,∞).

(HZRP) The jump rate g satisfies g(0) = 0, g(n) > 0 for all n > 0, is non-decreasing,
uniformly Lipschitz supn≥0 |g(n+ 1)− g(n)| < +∞, and there are n0 > 0 and β > 0
such that g(n′)− g(n) ≥ β for any n′ ≥ n+ n0.

The main result on the ZRP is:

Theorem 2.1 (Hydrodynamic limit for the ZRP). Consider L̂N defined in (2.1) with
g satisfying (HZRP). Let d = 1, f0 ∈ C3(T) with f0 ≥ δ > 0, and µN

0 ∈ P1(XN ) for

all N ≥ 1. Assume γ = 0, define µN
t = etN

2L̂N and ft ∈ C([0, T ), C3(Td)) solution
to (2.4), then the following convergence holds (with quantitative constants)

(2.5) sup
T≥0

1

T

∫ T

0

∥∥µN
t − ϑN

ft

∥∥
Lip∗ dt ≲ N−1/8 +

∥∥µN
0 − ϑN

f0

∥∥
Lip∗ .

2.2. The GLK. In this case, the state space at each site is X = R. Given the choice

of a single-site potential V ∈ C2(R), the base generator L̂N writes
(2.6)

L̂NΦ(η) :=
1

2

∑

x∼y∈Td
N

(
∂

∂ηx
− ∂

∂ηy

)2

− 1

2

∑

x∼y∈Td
N

[V ′(ηx)− V ′(ηy)]

(
∂

∂ηx
− ∂

∂ηy

)

where x ∼ y denotes neighbouring sites. The local equilibrium structure is given by

nλ(r) :=
eλr

Z(λ)
with Z(λ) :=

∫

R
eλr−V (r) dr

σ is defined implicitely by
Z ′(σ(ρ))
Z(σ(ρ))

≡ ρ.

When f ≡ ρ ∈ R is constant, the local Gibbs measure ϑN
ρ = νNσ(ρ) is invariant with

average spin ρ. The hyperbolic scaling formally leads to zero and the parabolic scaling

LN := N2L̂N formally leads to

(2.7) ∂tf = 2∆[σ(f)].

We assume that the single-site potential satisfies
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(HGLK) The potential V is C2 and decomposes as V (u) = V0(u) + V1(u) with
V ′′
0 (u) ≥ κ for all u ∈ R for some κ > 0 and ∥V1∥W 1,∞(R) ≲ 1.

This assumption is similar with those in [GOVW09, DMOWa, Fat13]. One can
take for example a double-well potential, provided it is uniformly convex at infinity.

Theorem 2.2 (Hydrodynamic limit for the GLK). Consider LN defined in (2.6)
with V satisfying (HGLK). Let d = 1, f0 ∈ C3(Td) and µN

0 ∈ P1(XN ) for all N ≥ 1.

Define µN
t = etN

2L̂N and ft ∈ C([0,+∞), C3(Td)) the global solution to (2.7), then
the following convergence holds (with quantitative constants)

(2.8) sup
T≥0

1

T

∫ T

0

∥∥µN
t − ϑN

ft

∥∥
Lip∗ dt ≲ N−1/8 +

∥∥µN
0 − ϑN

f0

∥∥
Lip∗ .

3. The abstract strategy

In this section we sketch the proof of Theorem 1.1. Let ft be a solution to (1.3).
Given 0 < ℓ < N , we denote by ηℓ for the local ℓ-average ηℓx :=

∑
|y−x|≤ℓ

ηy.

Denote by FN
t := dµN

t /dνN∞ and GN
t := dϑN

ft
/dνN∞ the densities with respect to

νN∞, and write

d

dt

(
FN
t −GN

t

)
= L∗

N

(
FN
t −GN

t

)
+
(
L∗
NGN

t − ∂tG
N
t

)

so that Duhamel’s formula yields

FN
t −GN

t = etL
∗
N
(
FN
0 −GN

0

)
+

∫ t

0

e(t−s)L∗
N
(
L∗
NGN

s − ∂sG
N
s

)
ds.

Take Φ ∈ Lip(XN ) with ∥Φ∥Lip(XN ) ≤ 1 and integrate the above equation to get
∫

XN

Φ
(
FN
t −GN

t

)
dνN∞

=

∫

XN

(
etLNΦ

) (
FN
0 −GN

0

)
dνN∞

︸ ︷︷ ︸
I1(t)

+

∫

XN

∫ t

0

(
e(t−s)LNΦ

) (
LNGN

s − ∂sG
N
s

)
dνN∞ ds

︸ ︷︷ ︸
I2(t)

.

(H1) implies I1(t) ≲ ∥µN
0 −ϑN

f0
∥Lip∗ and (H3) implies 1

T

∫ T

0
I2(t) dt ≤ ϵ(N)

∫ T

0
R(s) ds,

which implies the conclusion of Theorem 1.1.

4. Proof for the ZRP

In this section we prove Theorem 2.1) (hydrodynamical limit for the ZRP). Note
for this model LN = L∗

N is symmetric with respect to equilibrium measures. Given
ft ∈ C3(Td) with f > δ, δ > 0, and ρ :=

∫
Td f , the density of the local Gibbs measure

relatively to the invariant measure with mass ρ is:

(4.1) GN
t (η) :=

dϑN
f (η)

dϑN
ρ (η)

=
∏

x∈Td
N

(
σ (ft (x/N))

σ(ρ)

)η(x)(
Z(σ (ft (x/N)))

Z(σ(ρ))

)−1

.

where the function σ(r) is defined by ⟨nσ(r), η(x)⟩ = r and the partition function Z :
[0, λ∗) → R is defined in (2.2), with λ∗ ∈ [0,+∞] denoting the radius of convergence
of the series.
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It is proved in [KL99, Chapter 2, Section 3] that assumption (HZRP) on g implies
that σ = R−1 : [0,∞) → [0,∞) is well-defined and strictly increasing, with

R(λ) = λ∂λ log(Z(λ)) =
1

Z(λ)

∑

n≥0

nλn

g(n)!
.

Then the building block nρ of the Gibbs measure satisfies ⟨nσ(ρ), g(η(x))⟩ = σ(ρ).
Moreover (HZRP) implies that the function σ is C∞ with uniform bound on all
derivatives on R+, with Lipschitz constant less than g∗, see [KL99, Corollary 3.6],
and with infλ>0 λ

−1σ(λ) > 0 (in particular σ′(0) > 0). Finally (HZRP) also implies
the following comparison principle: if one starts from two ordered configurations
η ≤ ζ (at all points x ∈ Td

N ) then the evolution preserves this inequality at later
times: ηt ≤ ζt. This implies that if for any fN ∈ Cb(XN ) so that fN (η) ≤ fN (ζ) for

all η ≤ ζ one has ⟨µN,1
0 , fN ⟩ ≤ ⟨µN,2

0 , fN ⟩, then at later times µN,1
t ≺ µN,2

t . It easy
to deduce that the the kth moments (k ∈ N)

Mk

[
µN
t

]
:=

〈
µN
t ,

1

Nd

∑

x∈Td
N

η(x)k
〉

are uniformly bounded along time when µN
0 ≺ CϑN

ρ for some C > 0 and ρ ∈ R+.

4.1. Microscopic Stability – hypothesis (H1). We use again the “basic coupling”
as in [Lig85, Rez91]. We define

L̃NΨ(η, ζ) :=
∑

x,y∈Td
N

p(y − x)
(
g(ηx) ∧ g(ζx)

)[
Ψ(ηxy, ζxy)−Ψ(η, ζ)

]

+
∑

x,y∈Td
N

p(y − x)
(
g(ηx)− g(ηx) ∧ g(ζx)

)[
Ψ(ηxy, ζ)−Ψ(η, ζ)

]

+
∑

x,y∈Td
N

p(y − x)
(
g(ζx)− g(ηx) ∧ g(ζx)

)[
Ψ(η, ζxy)−Ψ(η, ζ)

]
.

(4.2)

for a two-variable test function Ψ(η, ζ). Then L̃NΦ(η) = L̂NΦ(η) and L̃NΦ(ζ) =

L̂NΦ(ζ), and (H1) follows from the fact that etL̃N preserves sign and the inequality

L̃N

(∑

z∈Td
N

|ηz − ζz|
)

≤ 0.

To prove the latter inequality, we compute

L̃N

(∑

z∈Td
N

|ηz − ζz|
)

=
∑

x,y∈Td
N

p(y − x)
(
g(ηx)− g(ηx) ∧ g(ζx)

)

×
[
|ηxyx − ζx|+ |ηxyy − ζy| − |ηx − ζx| − |ηy − ζy|

]

+
∑

x,y∈Td
N

p(y − x)
(
g(ζx)− g(ηx) ∧ g(ζx)

)

×
[
|ηx − ζxyx |+ |ηy − ζxyy | − |ηx − ζx| − |ηy − ζy|

]
.

When g(ηx)− g(ηx) ∧ g(ζx) > 0 necessarily ηx − ζy ≥ 1 and
[
|ηxyx − ζx|+ |ηxyy − ζy| − |ηx − ζx| − |ηy − ζy|

]
≤ 0.
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When g(ζx)− g(ηx) ∧ g(ζx) > 0 necessarily ζx − ηx ≥ 1 and
[
|ηx − ζxyx |+ |ηy − ζxyy | − |ηx − ζx| − |ηy − ζy|

]
≤ 0.

4.2. Macroscopic stability – hypothesis (H2). In the parabolic scaling the limit
PDE is the nonlinear diffusion equation (2.4). We take B = C3 with its standard
infinity Banach norm. The proof that this norm remains uniformly bounded in time
is classical in dimension d = 1 (using the bounds on σ), and ft ∈ [δ, 1−δ] for all times
by maximal principle. Moreover ft → ρ exponentially fast as t → ∞ in B.

4.3. Consistency estimate – hypothesis (H3). Note that the operator is self-
adjoint, L∗

N = LN , with respect to the equilibrium measures. We assume γ = 0.

Proposition 4.1. Given d = 1 and the solution ft ∈ C3(Td) to (2.4) with f ≥ δ,
δ > 0, and ρ :=

∫
Td f , and GN

t defined in (4.1), we have for every Φ ∈ Lip(XN )

1

T

∫ T

0

INt dt :=
1

T

∫ T

0

∫ t

0

〈(
e(t−s)LNΦ

)
,

[
LNGN

s − d

ds
GN

s

]
dνN∞

〉
dsdt = O(N−1/8)

where the constant depends on the estimates in (H2).

Proof. We start by computing

LNGN
s − d

ds
GN

s =
∑

x∈Td
N

AN
x GN

s

with (note that ft → ρ exponentially fast)

AN
x := N2

∑

y∈Td
N

p(y − x)g(ηx)

(
σ (ft (y/N))

σ (ft (x/N))
− 1

)
− ηx

σ′ (ft (x/N))

σ (ft (x/N))
∆a[σ(f)] (x/N)

=
g(ηx)

σ (ft (x/N))
∆a[σ(f)] (x/N)− ηx

σ′ (ft (x/N))

σ (ft (x/N))
∆a[σ(f)] (x/N) +O

(
e−Cs/N

)

for some C > 0. Since (conservation of mass)
∫

XN

( ∑

x∈Td
N

AN
x GN

s

)
dνN∞ =

∫

XN

( ∑

x∈Td
N

AN
x

)
dϑN

fs = 0,

we can replace Φt−s := e(t−s)LNΦ by

Φ̃t,s := e(t−s)LNΦ−EϑN
fs
[e(t−s)LNΦ]

and use the Lipschitz bound on e(t−s)LNΦ (microscopic stability) to get

INt =

∫ t

0

∫

XN

Φ̃t,s(η)

( ∑

x∈Td
N

ÃN
x

)
dϑN

fs +O (1/N)

with ÃN
x defined by (note that it has zero average against dϑN

fs
)

ÃN
x := {g(ηx)− σ (ft (x/N))− σ′ (ft (x/N)) [ηx − ft (x/N)]} ∆a[σ(f)] (x/N)

σ (ft (x/N))
.

We then form sub-sum over non-overlapping cubes of size ℓ ∈ {1, . . . , N} (this inter-
mediate scale factor ℓ will be chosen later in terms of N). Let Rd

N ⊂ Td
N be a net of
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centers of non-overlapping cubes of the form Cx := {y ∈ Td
N : ∥x− y∥∞ ≤ ℓ}. Then

INt =
∑

x∈Rd
N

∫ t

0

∫

XN

Φ̃t,s(η)

(∑

y∈Cx

ÃN
y

)
dϑN

fs +O (1/N)

= (2ℓ+ 1)d
∑

x∈Rd
N

∫ t

0

∫

XN

Φ̃t,s(η)Â
N
x dϑN

fs +O (1/N)

with the ÂN
x defined by

ÂN
x := {⟨g(η)⟩Cx − σ (ft (x/N))− σ′ (ft (x/N)) [⟨η⟩Cx − ft (x/N)]} ∆a[σ(f)] (x/N)

σ (ft (x/N))

where ⟨F (η)⟩Cx , for F = F (ηx), denotes taking the average over the cube Cx. Note

that the average of ÂN
x against dϑN

fs
is O(e−Csℓ/N). Then

∑

x∈Rd
N

∫ t

0

∫

XN

Φ̃t,sÂ
N
x dϑN

fs

=
∑

x∈Rd
N

∫ t

0

∫

XN

(
Φ̃t,s −ΠN

x Φ̃t,s

)
ÂN

x dϑN
fs +

∑

x∈Rd
N

∫ t

0

∫

XN

ΠN
x Φ̃t,sÂ

N
x dϑN

fs

=
∑

x∈Rd
N

∫ t

0

∫

XN

(
Φt−s −ΠN

x Φt−s

)
ÂN

x dϑN
fs

+
∑

x∈Rd
N

∫ t

0

∫

XN

(
ΠN

x Φt−s −EϑN
fs
[ΠN

x Φt−s]
)
ÂN

x dϑN
fs =: J1

t + J2
t

where ΠN
x projects on the local equilibrium with same mass in the cube Cx (and does

not touch the other site):

(4.3)





ΠN
x φ(η) = [ΠN

x φ](⟨η⟩Cx
) =

∫
Ω⟨η⟩Cx

φ(η̃) dνℓ,⟨η⟩Cx (η̃)

Ωm := {η̃ : ⟨η̃⟩Cx
= m}

for a function φ on XCx . To estimate the first term J1
t we first approximate the

measure ϑN
fs

on Cx by the equilibrium measure with local mass ft(x/N), and denote

it by ϑfs (note that the approximation is made differently for each cube and depends
on x, even if it is written explicitly). This produces an error O(ℓd+1/N) (using the
Lipschitz regularity of Φt−s and the exponential convergence ft → ρ to get uniform
in time bounds). We then apply the Poincaré inequality [LSV96, Theorem 1.1] in the
cube Cx (whose constant is independent of the number of particles and proportional

to the size of the cube) and the law of large number ∥ÂN
x ∥

L2(ϑ
N
fs

)
= O(e−Csℓ−d/2):

J1
t ≤

∑

x∈Rd
N

∫ t

0

∥Φt−s −ΠN
x Φt−s∥L2(ϑ

N
fs

)
∥ÂN

x ∥
L2(ϑ

N
fs

)
ds+O

(
ℓd+1/N

)

≲ ℓ1−d/2
∑

x∈Rd
N

∫ t

0

√
D

ℓ

x (Φt−s)e
−Cs ds+O

(
ℓd+1/N

)

≲ ℓ1−d/2Nd/2

∫ t

0

( ∑

x∈Rd
N

D
ℓ

x (Φt−s)

)1/2

e−Cs ds+O
(
ℓd+1/N

)
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where D
ℓ

x(Φ) is the Dirichlet form on the cube Cx with respect to the measure ϑ
N

fs :

D
ℓ

x(Φ) :=
∑

y,z∈Cx

∫

XN

p(z − y)g(ηy) [Φ(η
yz)− Φ(η)]

2
dϑ

N

fs .

Then we change back the measure ϑ
N

fs in each box, which produces (using the Lipschitz

regularity of Φ) an error ℓ3/2N−1/2), and we compute

1

2N2

d

dt

∫

XN

Φt−s(η)
2 dϑN

fs ≤ −
∑

x∈Rd
N

Dℓ
x (Φt−s) +O

(
1/N2

)

(with Dℓ denoting the Dirichlet form for ϑN
fs
), where the last error accounts for the

small default of self-adjointness. We deduce (in dimension d = 1) that
∫ T

0

J1
t dt ≲ T 1/2 (ℓ/N)

1−d/2
+O

(
Tℓd+1/N

)
.

To control the second term J2
t , we first use the equivalence of ensemble in [KL99,

Appendix II, Corollary 1.7] on the measure ϑ
N

fs (together with the exponential tail
estimates on the local Gibbs measure) to get

(4.4) ⟨g(η)⟩Cx
= σ (⟨η⟩Cx

) +O
(
1/ℓd

)
.

Second we remark that the Lipschitz regularity of Φt−s implies that ΠN
x Φt−s −

EϑN
fs
[ΠN

x Φt−s] = O(ℓdN−d), and since the average of ÂN
x with respect to ϑN

fs
is

O(ℓ/N), we can write

J2
t =

∑

x∈Rd
N

∫ t

0

∫

XN

(
ΠN

x Φt−s[⟨η⟩Cx
]−ΠN

x Φt−s [fs (x/N)]
)
ÂN

x dϑN
fs +O (ℓ/N) .

Third, we remark that the Lipschitz regularity of Φt−s (with constant N−d) implies
a Lipschitz regularity of its averaged projection ΠN

x Φt−s with constant ℓdN−d, with
respect to the local mass. Indeed, given 0 = m ≤ m′ < +∞, pick any pair of
configuration (η0, ζ0) with ⟨η0⟩Cx

= m, ⟨ζ0⟩Cx
= m′ and η0 ≤ ζ0 (such configuration

trivially exists since m ≤ m′). Then we consider the initial coupling δ(η0,ζ0) on Ωm ×
Ωm′ which has ℓ1 costm′−m. Then we evolve it along the flow of the coupling operator

etL̃N δ(η0,ζ0). The marginals respectively converge to νℓ,m and νℓ,m
′
(convergence to

equilibrium of the oiriginal evolution). Since the evolution by the coupling operator

does not increase the Wasserstein distance, we deduce W1(ν
ℓ,m, νℓ,m

′
) ≤ m′ −m. An

optimal coupling Π associated to this distance thus satisfies

m′ −m ≤
∫

Ωm×Ωm′

( ∑

x∈Td
N

|ηx − ζx|
)
Π(η, ζ) ≤ m′ −m

where the first inequality follows from Jensen’s inequality. Thus the Jensen’s inequal-
ity is saturated which implies that the cost does not change sign on the support of Π,
i.e. η ≤ ζ in the support. We then compute

ΠN
x Φt−s(m

′)−ΠN
x Φt−s(m) =

∫

Ωm′
Φt−s(ζ) dν

ℓ,m′
(ζ)−

∫

Ωm

Φt−s(η) dν
ℓ,m(η)

=

∫

Ωm×Ωm′
[Φt−s(ζ)− Φ(η)] dΠ(η, ζ)
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and since η ≤ ζ on the support of Π, ∥ζ − η∥ℓ1(Cx) = (m′ −m)ℓd and

∣∣ΠN
x Φt−s(m

′)−ΠN
x Φt−s(m)

∣∣ ≤ ℓd

Nd
|m′ −m|.

We deduce (using (5.3))

J2
t ≲ ℓd

Nd

∑

x∈Rd
N

∫ t

0

∫

XN

|⟨η⟩Cx
− fs (x/N)| ×

|σ(⟨η⟩Cx
)− σ (fs (x/N))− σ′ (fs (x/N)) [⟨η⟩Cx

− fs (x/N)]| dϑN
fse

−Cs ds

+
1

Nd

∑

x∈Rd
N

∫ t

0

∫

XN

|⟨η⟩Cx
− fs (x/N)| dϑN

fse
−Cs ds+O (ℓ/N)

which yields by Taylor formula, the approximation of ϑN
fs

by ϑ
N

fs , and the law of large
numbers

J2
t ≲ ℓd

Nd

∑

x∈Rd
N

∫ t

0

∫

XN

|⟨η⟩Cx
− fs (x/N)|3 dϑN

fse
−Cs ds

+
1

Nd

∑

x∈Rd
N

∫ t

0

∫

XN

|⟨η⟩Cx
− fs (x/N)| dϑN

fse
−Cs ds+O (ℓ/N) e−Cs ds

≲ ℓd

Nd

∑

x∈Rd
N

∫ t

0

∫

XN

|⟨η⟩Cx
− fs (x/N)|3 dϑ

N

fse
−Cs ds

+
1

Nd

∑

x∈Rd
N

∫ t

0

∫

XN

|⟨η⟩Cx
− fs (x/N)| dϑN

fse
−Cs ds+O (ℓ/N)

≲ O
(
ℓ−3d/2

)
+O (ℓ/N) .

Combining all estimates we get (optimizing ℓ := N1/4)

1

T

∫ T

0

INt dt ≲
(

1

N
+

ℓ1+d/2

N1−d/2
+

ℓ1+2d

N
+

1

ℓd/2
+

ℓ

N

)
≲ 1

N1/8
. □

5. Proof for the GLK

In this section we prove Theorem 2.2 (hydrodynamic limit for the GLK). Note again
that for this model LN = L∗

N is symmetric with respect to equilibrium measures.
Given ft ∈ C3(Td) and ρ :=

∫
Td f ∈ R, the density of the local Gibbs measure

relatively to the invariant measure with mass ρ is:

(5.1) GN
t (η) :=

dϑN
f (η)

dϑN
ρ (η)

=
∏

x∈Td
N

e[σ(ft(x/N))−σ(ρ)]ηx
Z(σ(ρ))

Z (σ (ft (x/N)))
.

where the function σ(r) is defined by ⟨nσ(r), ηx⟩ = r and the partition function Z(λ) =∫
R eλr−V (r) dr is defined on R. The uniform convexity of V at infinity easily implies
bounds on all moments of the invariant measure∫

XN

∑

x∈Td
N

η(x)kdϑN
ρ (η) = Ck < ∞.
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and it is known that (HGLK) implies that there exists C > 0 so that 0 < 1
C ≤ σ′ ≤

C < ∞ (see [GOVW09, Lemma 41] and [DMOWa, Lemma 5.1]).

5.1. Microscopic stability – hypothesis (H1). We consider a coupling of two

Ginzburg-Landau processes with generator L̃N : Cb(X
2
N ) → Cb(X

2
N ) given by

L̃NΨ(η, ζ) :=
∑

x∼y

([(
∂

∂ηx
− ∂

∂ηy

)∗(
∂

∂ηx
− ∂

∂ηy

)
⊗ 1

]
Ψ(η, ζ)

+

[
1⊗

(
∂

∂ζx
− ∂

∂ζy

)∗(
∂

∂ζx
− ∂

∂ζy

)]
Ψ(η, ζ)

+K

(
∂

∂ηx
− ∂

∂ηy

)
⊗
(

∂

∂ζx
− ∂

∂ζy

)
Ψ(η, ζ)

)
(5.2)

where K > 0 is a constant to be chosen later and the adjoint is taken in L2(dϑN
ρ ) so

L̂N =
∑

x∼y

(
∂

∂ηx
− ∂

∂ηy

)2

− (V ′(ηx)− V ′(ηy))

(
∂

∂ηx
− ∂

∂ηy

)

=
∑

x∼y

(
∂

∂ηx
− ∂

∂ηy

)∗(
∂

∂ηx
− ∂

∂ηy

)
.

Then for any p ∈ (1, 2] there is K = K(p) > 0 (depending on p) so that

L̃N

( ∑

x∈Td
N

|ηx − ζx|p
)

= 2p(p− 1)(2 + 4d)
∑

x∈Td
N

|ηx − ζx|p−2

− 2(p− 1)
∑

x∼y

[V ′
0(ηx)− V ′

0(ζx)] (ηx − ζx)|ηx − ζx|p−1

− 2(p− 1)
∑

x∼y

[V ′
1(ηx)− V ′

1(ζx)] (ηx − ζx)|ηx − ζx|p−1

+Kp(p− 1)(2 + 4d)
∑

x∈Td
N

|ηx − ζx|p−2 ≤ 0

by using the assumptions on the potential: V0 uniformly strictly convex and V1 ∈
W 1,∞. This implies the weak contraction of the evolution in Wp (p-Wasserstein
distance) for any p ∈ (1, 2], and thus by limit in W1. By duality this implies that the
evolution is weakly contractive for the dual Lipschitz norm.

5.2. Macroscopic stability - hypothesis (H2). The limit equation is a one-dimensional
nonlinear diffusion equation with uniform ellipticity bounds, and standard elliptic
theory shows that the solution exists globally and converges exponentially fast to a
constant in C3(Td).

5.3. Consistency estimate - hypothesis (H3).

Proposition 5.1. Given d = 1 and the solution ft ∈ C3(Td) to (2.4), and ρ :=
∫
Td f ,

and GN
t defined in (5.1), we have for every Φ ∈ Lip(XN )

1

T

∫ T

0

INt dt :=
1

T

∫ T

0

∫ t

0

〈(
e(t−s)LNΦ

)
,

[
LNGN

s − d

ds
GN

s

]
dνN∞

〉
dsdt = O

(
N−1/8

)

where the constant depends on the estimates in (H2).
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Proof. The proof follows the same structure as for the ZRP. We start by computing

LNGN
s − d

ds
GN

s =
∑

x∈Td
N

AN
x GN

s

with (note again that ft → ρ exponentially fast)

AN
x :=

N2

2

∑

y∼x

[
(σ (fs (x/N))− σ (fs (y/N)))

2

− (V ′(ηx)− V ′(ηy)) (σ (fs (x/N))− σ (fs (y/N)))

]

−
∑

x

(ηx − fs (x/N))σ′ (fs (x/N))∆[σ(f)] (x/N)

=
N2

2

∑

y∼x

[
2σ (fs (x/N)) (σ (fs (x/N))− σ (fs (y/N)))

− 2V ′(ηx)σ (fs (x/N))− σ (fs (y/N))

]

−
∑

x

(ηx − fs (x/N))σ′ (fs (x/N))∆[σ(f)] (x/N)

= ∆[σ(f)] (x/N)

[
V ′(ηx)− σ (fs (x/N))

− σ′ (fs (x/N)) (ηx − fs (x/N))

]
+O

(
e−Cs/N

)

for some C > 0. By conservation of mass we replace again Φt−s := e(t−s)LNΦ by

Φ̃t,s := e(t−s)LNΦ−EϑN
fs
[e(t−s)LNΦ]

and use the Lipschitz bound (H1) on e(t−s)LNΦ to get

INt =

∫ t

0

∫

XN

Φ̃t,s(η)

( ∑

x∈Td
N

ÃN
x

)
dϑN

fs +O (1/N)

with ÃN
x defined by (note that it has zero average against dϑN

fs
)

ÃN
x := ∆[σ(f)] (x/N) [V ′(ηx)− σ (f (x/N))− σ′ (fs (x/N)) (ηx − f (x/N))] .

We again form sub-sum over non-overlapping cubes of size ℓ ∈ {1, . . . , N}, with
Rd

N ⊂ Td
N a net of centers of cubes Cx := {y ∈ Td

N : ∥x− y∥∞ ≤ ℓ}. Then

INt =
∑

x∈Rd
N

∫ t

0

∫

XN

Φ̃t,s(η)

(∑

y∈Cx

ÃN
y

)
dϑN

fs +O (1/N)

= (2ℓ+ 1)d
∑

x∈Rd
N

∫ t

0

∫

XN

Φ̃t,s(η)Â
N
x dϑN

fs +O (1/N)

with the ÂN
x defined by (and ⟨F (η)⟩Cx

again denotes the average over the cube Cx)
ÂN

x := ∆[σ(f)] (x/N) [⟨V ′(η)⟩Cx
− σ (f (x/N))− σ′ (fs (x/N)) (⟨η⟩Cx

− f (x/N))] .
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(Note again that the average of ÂN
x against dϑN

fs
is O(e−Csℓ/N).) Then

∑

x∈Rd
N

∫ t

0

∫

XN

Φ̃t,sÂ
N
x dϑN

fs

=
∑

x∈Rd
N

∫ t

0

∫

XN

(
Φ̃t,s −ΠN

x Φ̃t,s

)
ÂN

x dϑN
fs +

∑

x∈Rd
N

∫ t

0

∫

XN

ΠN
x Φ̃t,sÂ

N
x dϑN

fs

=
∑

x∈Rd
N

∫ t

0

∫

XN

(
Φt−s −ΠN

x Φt−s

)
ÂN

x dϑN
fs

+
∑

x∈Rd
N

∫ t

0

∫

XN

(
ΠN

x Φt−s −EϑN
fs
[ΠN

x Φt−s]
)
ÂN

x dϑN
fs =: J1

t + J2
t

where ΠN
x again averages over Ωm (and does not touch the other site) as in (4.3).

To estimate the first term J1
t we again approximate the measure ϑN

fs
on Cx by the

equilibrium measure with local mass ft(x/N), and denote it by ϑfs (note that the
approximation is made differently for each cube and depends on x, even if it is written
explicitly). This produces an error O(ℓd+1/N) (using the Lipschitz regularity of Φt−s

and the exponential convergence ft → ρ to get uniform in time bounds). We then
apply the Poincaré inequality [LY93, Theorem 2] in the cube Cx (whose constant is
independent of the number of particles and proportional to the size of the cube) and

the law of large number ∥ÂN
x ∥

L2(ϑ
N
fs

)
= O(e−Csℓ−d/2):

J1
t ≤

∑

x∈Rd
N

∫ t

0

∥Φt−s −ΠN
x Φt−s∥L2(ϑ

N
fs

)
∥ÂN

x ∥
L2(ϑ

N
fs

)
ds+O

(
ℓd+1/N

)

≲ ℓ1−
d
2

∑

x∈Rd
N

∫ t

0

√
D

ℓ

x (Φt−s)e
−Cs ds+O

(
ℓd+1/N

)

≲ ℓ1−
d
2Nd/2

∫ t

0

( ∑

x∈Rd
N

D
ℓ

x (Φt−s)

)1/2

e−Cs ds+O
(
ℓd+1/N

)

where D
ℓ

x(Φ) is the Dirichlet form on the cube Cx with respect to the measure ϑ
N

fs :

D
ℓ

x(Φ) :=
∑

y∼z∈Cx

∫

XN

[
∂ηxΦ(η)− ∂ηyΦ(η)

]2
dϑ

N

fs .

Then we use the entropy production

1

2N2

d

dt

∫

XN

Φt−s(η)
2 dϑN

fs ≤ −
∑

x∈Rd
N

Dℓ
x (Φt−s) +O

(
1/N2

)

as before to deduce that
∫ T

0

J1
t dt ≲ T 1/2 (ℓ/N)

1−d/2
+O

(
Tℓd+1/N

)
.

To control the second term J2
t , we first use the equivalence of ensemble in [LPY02,

Corollary 5.3] on the measure ϑ
N

fs (together with the exponential tail estimates on
the local Gibbs measure) to get

(5.3) ⟨V ′(η)⟩Cx
= σ (⟨η⟩Cx

) +O
(
1/ℓd

)
.
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Second we remark that the Lipschitz regularity of Φt−s implies that ΠN
x Φt−s −

EϑN
fs
[ΠN

x Φt−s] = O(ℓdN−d), and since the average of ÂN
x with respect to ϑN

fs
is

O(ℓ/N), we can write

J2
t =

∑

x∈Rd
N

∫ t

0

∫

XN

(
ΠN

x Φt−s[⟨η⟩Cx
]−ΠN

x Φt−s [fs (x/N)]
)
ÂN

x dϑN
fs +O (ℓ/N) .

Third, we prove again that the Lipschitz regularity of Φt−s (with constant N−d)
implies a Lipschitz regularity of its averaged projection ΠN

x Φt−s with constant ℓdN−d,
with respect to the local mass. Indeed, given 0 = m < m′ < +∞, pick any pair of
configuration (η0, ζ0) with ⟨η0⟩Cx

= m, ⟨ζ0⟩Cx
= m′ and η0 < ζ0 (such configuration

trivially exists since m < m′). Then consider the coupling on Ωm ×Ωm′ produced by
a product of localised smooth distribution around δη0

and δζ0 , so that the support
only contains strictly ordered η < ζ. Then we evolve it along the flow of the coupling

operator etL̃N δ(η0,ζ0). The marginals respectively converge to νℓ,m and νℓ,m
′
(conver-

gence to equilibrium of the oiriginal evolution). Arguing as for the ZRP, we deduce

that W1(ν
ℓ,m, νℓ,m

′
) = m′ − m, and a corresponding optimal coupling Π associated

to this distance is so that the cost does not change sign on its support, i.e. η ≤ ζ in
the support. We deduce as for the ZRP that ΠN

x Φt−s is ℓdN−d-Lipschitz.

We deduce (using (5.3)), the Taylor formula, the approximation of ϑN
fs

by ϑ
N

fs , and

the law of large numbers, the same estimate on J2
t as for the ZRP, and finally the

same conclusion follows (optimizing ℓ := N1/4)

1

T

∫ T

0

INt dt ≲
(

1

N
+

ℓ1+d/2

N1−d/2
+

ℓ1+2d

N
+

1

ℓd/2
+

ℓ

N

)
≲ 1

N1/8
. □
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38(5):739–777, 2002.
[LSV96] C. Landim, S. Sethuraman, and S. Varadhan. Spectral gap for zero-range dynamics.

Ann. Probab., 24(4):1871–1902, 1996.
[LY93] Sheng Lin Lu and Horng-Tzer Yau. Spectral gap and logarithmic Sobolev inequality for

Kawasaki and Glauber dynamics. Comm. Math. Phys., 156(2):399–433, 1993.

[MMM22] D. Marahrens, A. Menegaki, and C. Mouhot. Quantitative hydrodynamic limit of inter-

acting particle systems on lattices. soon on the ArXiv, 2022.
[Rez91] F. Rezakhanlou. Hydrodynamic limit for attractive particle systems on Zd. Comm.

Math. Phys., 140(3):417–448, 1991.
[Yau91] H.-T. Yau. Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math.

Phys., 22(1):63–80, 1991.

Angeliki Menegaki and Clément Mouhot

VII–14



Institut des hautes études Scientifiques, 35 Rte de Chartres, 91440, Bures-sur-Yvette,

France

Email address: Menegaki@ihes.fr

DPMMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

Email address: C.Mouhot@dpmms.cam.ac.uk

Exp. no VII— A consistence-stability approach to hydrodynamic limit of interacting particle systems on lattices

VII–15


