We review some recent progress on the blow-up dynamics for the self-dual Chern–Simons–Schrödinger equation within equivariance. We describe the results of the recent series of works [18, 19, 20, 22, 21] by the author, Kwon, and Oh. We in particular discuss soliton resolution and rotational instability for this model.
@article{SLSEDP_2021-2022____A4_0, author = {Kihyun Kim}, title = {Blow-up dynamics for the self-dual {Chern{\textendash}Simons{\textendash}Schr\"odinger} equation}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:2}, pages = {1--13}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2021-2022}, doi = {10.5802/slsedp.149}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.149/} }
TY - JOUR AU - Kihyun Kim TI - Blow-up dynamics for the self-dual Chern–Simons–Schrödinger equation JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:2 PY - 2021-2022 SP - 1 EP - 13 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.149/ DO - 10.5802/slsedp.149 LA - en ID - SLSEDP_2021-2022____A4_0 ER -
%0 Journal Article %A Kihyun Kim %T Blow-up dynamics for the self-dual Chern–Simons–Schrödinger equation %J Séminaire Laurent Schwartz — EDP et applications %Z talk:2 %D 2021-2022 %P 1-13 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.149/ %R 10.5802/slsedp.149 %G en %F SLSEDP_2021-2022____A4_0
Kihyun Kim. Blow-up dynamics for the self-dual Chern–Simons–Schrödinger equation. Séminaire Laurent Schwartz — EDP et applications (2021-2022), Talk no. 2, 13 p. doi : 10.5802/slsedp.149. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.149/
[1] J. B. van den Berg & J. F. Williams – (In-)stability of singular equivariant solutions to the Landau-Lifshitz-Gilbert equation, European J. Appl. Math. 24 (2013), no. 6, p. 921–948. | DOI | MR | Zbl
[2] L. Bergé, A. De Bouard & J.-C. Saut – Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity 8 (1995), no. 2, p. 235–253. | DOI | MR | Zbl
[3] —, Collapse of Chern-Simons-gauged matter fields, Phys. Rev. Lett. 74 (1995), no. 20, p. 3907–3911. | DOI | MR | Zbl
[4] C. Collot – Type II blow up manifolds for the energy supercritical semilinear wave equation, Mem. Amer. Math. Soc., vol. 252, no. 1205, Amer. Math. Soc., 2018. | DOI
[5] C. Collot, T. Duyckaerts, C. E. Kenig & F. Merle – Soliton resolution for the radial quadratic wave equation in six space dimensions, 2022. | arXiv
[6] G. Dunne – Self-dual Chern-Simons theories, Lecture Notes in Physics Monographs, vol. 36, Springer-Verlag Berlin Heidelberg, 1995. | DOI
[7] T. Duyckaerts, C. Kenig, Y. Martel & F. Merle – Soliton resolution for critical co-rotational wave maps and radial cubic wave equation, Comm. Math. Phys. 391 (2022), no. 2, p. 779–871. | DOI | MR | Zbl
[8] T. Duyckaerts, C. Kenig & F. Merle – Classification of radial solutions of the focusing, energy-critical wave equation, Camb. J. Math. 1 (2013), no. 1, p. 75–144. | DOI | MR | Zbl
[9] —, Soliton resolution for the radial critical wave equation in all odd space dimensions, 2019, to appear in Acta Math. | arXiv
[10] H. Huh – Energy solution to the Chern-Simons-Schrödinger equations, Abstr. Appl. Anal. (2013), article no. 590653 (7 pages). | DOI | Zbl
[11] R. Jackiw & S.-Y. Pi – Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D (3) 42 (1990), no. 10, p. 3500–3513. | DOI | MR
[12] —, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett. 64 (1990), no. 25, p. 2969–2972. | DOI | Zbl
[13] —, Time-dependent Chern-Simons solitons and their quantization, Phys. Rev. D (3) 44 (1991), no. 8, p. 2524–2532. | DOI | MR
[14] —, Self-dual Chern-Simons solitons, in Low-dimensional field theories and condensed matter physics (Kyoto, 1991), Progr. Theoret. Phys. Suppl., vol. 107, 1992, p. 1–40. | DOI | MR
[15] J. Jendrej & A. Lawrie – Soliton resolution for equivariant wave maps, 2021. | arXiv
[16] —, Soliton resolution for the energy-critical nonlinear wave equation in the radial case, 2022. | arXiv
[17] J. Jendrej, A. Lawrie & C. Rodriguez – Dynamics of bubbling wave maps with prescribed radiation, 2019, to appear in Ann. Sci. Éc. Norm. Supér. | arXiv
[18] K. Kim & S. Kwon – On pseudoconformal blow-up solutions to the self-dual Chern-Simons-Schrödinger equation: existence, uniqueness, and instability, 2019, to appear in Mem. Amer. Math. Soc. | arXiv
[19] —, Construction of blow-up manifolds to the equivariant self-dual Chern-Simons-Schrödinger equation, 2020. | arXiv
[20] K. Kim, S. Kwon & S.-J. Oh – Blow-up dynamics for smooth finite energy radial data solutions to the self-dual Chern-Simons-Schrödinger equation, 2020. | arXiv
[21] —, Blow-up dynamics for radial self-dual Chern-Simons-Schrödinger equation with prescribed asymptotic profile, preprint, 2022.
[22] —, Soliton resolution for equivariant self-dual Chern-Simons-Schrödinger equation in weighted Sobolev class, preprint, 2022.
[23] J. Krieger, W. Schlag & D. Tataru – Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), no. 3, p. 543–615. | DOI | MR | Zbl
[24] Z. Li & B. Liu – On threshold solutions of the equivariant Chern-Simons-Schrödinger equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire 39 (2022), no. 2, p. 371–417. | DOI
[25] Z. M. Lim – Large data well-posedness in the energy space of the Chern-Simons-Schrödinger system, J. Differential Equations 264 (2018), no. 4, p. 2553–2597. | DOI | Zbl
[26] B. Liu & P. Smith – Global wellposedness of the equivariant Chern-Simons-Schrödinger equation, Rev. Mat. Iberoam. 32 (2016), no. 3, p. 751–794. | DOI | Zbl
[27] B. Liu, P. Smith & D. Tataru – Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Not. IMRN 23 (2014), p. 6341–6398. | DOI | Zbl
[28] Y. Martel – Asymptotic -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math. 127 (2005), no. 5, p. 1103–1140. | DOI | MR | Zbl
[29] F. Merle – Construction of solutions with exactly blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys. 129 (1990), no. 2, p. 223–240. | DOI | Zbl
[30] F. Merle & P. Raphaël – Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), no. 3, p. 591–642. | DOI | Zbl
[31] —, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2005), no. 3, p. 675–704. | DOI | Zbl
[32] —, On a sharp lower bound on the blow-up rate for the critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2006), no. 1, p. 37–90. | DOI | Zbl
[33] F. Merle, P. Raphaël & I. Rodnianski – Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem, Invent. Math. 193 (2013), no. 2, p. 249–365. | DOI | Zbl
[34] —, Type II blow up for the energy supercritical NLS, Camb. J. Math. 3 (2015), no. 4, p. 439–617. | DOI | MR | Zbl
[35] F. Merle, P. Raphaël & J. Szeftel – The instability of Bourgain-Wang solutions for the critical NLS, Amer. J. Math. 135 (2013), no. 4, p. 967–1017. | Zbl
[36] N. Mizoguchi – Rate of type II blowup for a semilinear heat equation, Math. Ann. 339 (2007), no. 4, p. 839–877. | DOI | MR | Zbl
[37] S.-J. Oh & F. Pusateri – Decay and scattering for the Chern-Simons-Schrödinger equations, Int. Math. Res. Not. IMRN 24 (2015), p. 13122–13147. | DOI | Zbl
[38] P. Raphaël – Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann. 331 (2005), no. 3, p. 577–609. | DOI | Zbl
[39] P. Raphaël & I. Rodnianski – Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. Inst. Hautes Études Sci. 115 (2012), p. 1–122. | DOI | MR | Zbl
[40] P. Raphaël & R. Schweyer – Quantized slow blow-up dynamics for the corotational energy-critical harmonic heat flow, Anal. PDE 7 (2014), no. 8, p. 1713–1805. | DOI | MR | Zbl
[41] P. Raphaël & J. Szeftel – Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc. 24 (2011), no. 2, p. 471–546. | DOI | MR | Zbl
[42] I. Rodnianski & J. Sterbenz – On the formation of singularities in the critical -model, Ann. of Math. (2) 172 (2010), no. 1, p. 187–242. | DOI | MR | Zbl
Cited by Sources: