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BLOW-UP DYNAMICS FOR THE SELF-DUAL
CHERN–SIMONS–SCHRÖDINGER EQUATION

KIHYUN KIM

Abstract. We review some recent progress on the blow-up dynamics for the
self-dual Chern–Simons–Schrödinger equation within equivariance. We de-
scribe the results of the recent series of works [18, 19, 20, 22, 21] by the au-
thor, Kwon, and Oh. We in particular discuss soliton resolution and rotational
instability for this model.

1. Introduction

The self-dual Chern–Simons–Schrödinger equation within m-equivariance is

(CSS) i(∂t + iAt[u])u+ ∂2ru+
1

r
∂ru−

(m+Aθ[u]

r

)2

u+ |u|2u = 0,

where u : I × (0,∞) → C (I is a time interval), m ∈ Z (called equivariance index ),
and the connection components At[u] and Aθ[u] are given by

(1.1) At[u] = −
ˆ ∞

r

(m+Aθ[u])|u|2
dr′

r′
, Aθ[u] = −1

2

ˆ r

0

|u|2r′dr′.

The Chern–Simons–Schrödinger equation was introduced by the physicists Jackiw
and Pi [12] as a gauge-covariant cubic nonlinear Schrödinger equation on R2. It
is a non-relativistic quantum mechanical model that describes the dynamics of in-
teracting charged particles on the plane. The model (CSS) is derived after fixing
the Coulomb gauge condition and imposing the equivariant symmetry on the scalar
field ϕ : I × R2 → C:

ϕ(t, x) = u(t, r)eimθ,

where (r, θ) are the polar coordinates on R2. We refer to [12, 11, 13, 14, 6] for more
physical backgrounds, and refer to the introduction of [18, 19, 20] for more details
on this equivariant symmetry reduction.

What makes the model (CSS) fascinating is the self-duality, which equips the
model with a special algebraic structure. It was observed by Jackiw and Pi in
[12], who exploited the self-duality to connect the soliton equation to the Liouville
equation, which is completely integrable, and were able to find an explicit family
of solitons. We will discuss more on the self-duality below.

The long time dynamics of (CSS), we believe, makes the model more interesting.
The goal of this report is to introduce the following two nonlinear dynamics: the
strong rigidity in asymptotic behavior of solutions (soliton resolution) and the ro-
tational instability mechanism for some finite-time blow-up solutions. The results
presented here are based on the recent series of works [18, 19, 20, 22, 21] by the
author, Kwon, and Oh.
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We briefly describe various symmetries and conservation laws of (CSS). Among
the most basic symmetries are the time translation and the phase rotation symme-
tries. Associated to these are the conservation laws for the energy and the mass1:

E[u] :=

ˆ

1

2
|∂ru|2 +

1

2

(m+Aθ[u]

r

)2

|u|2 − 1

4
|u|2,(1.2)

M [u] :=

ˆ

|u|2,(1.3)

where we denoted
´

f(r) = 2π
´

f(r)rdr. With this energy functional, (CSS) ad-
mits a Hamiltonian structure

∂tu = −i∇E[u],

where ∇ (acting on a functional) is the Fréchet derivative with respect to the real
inner product

´

Re(uv). Of particular importance are the L2-scaling symmetry
and the pseudoconformal symmetry ; if u(t, r) is a solution to (CSS), then the func-
tions uλ and Cu also solve (CSS):

uλ(t, r) :=
1

λ
u
( t

λ2
,
r

λ

)
, ∀λ > 0,(1.4)

[Cu](t, r) := 1

|t|u
(
− 1

t
,
r

|t|
)
eir

2/4t, ∀t ̸= 0.(1.5)

Associated to (1.4) and (1.5) are the virial identities:

∂t

ˆ

r2|u|2 = 4

ˆ

Im(u · r∂ru),(1.6)

∂t

ˆ

Im(u · r∂ru) = 4E[u].(1.7)

In this aspect, (CSS) shares many similarities with the cubic NLS

(NLS) i∂tψ +∆ψ + |ψ|2ψ = 0 on R1+2.

A distinguished feature of (CSS) in comparison to NLS is the self-duality. Indeed,
the energy functional can be written in the self-dual form

(1.8) E[u] =

ˆ

1

2
|Duu|2,

where Du is the (covariant) Cauchy–Riemann operator defined by

(1.9) Duf := ∂rf − m+Aθ[u]

r
f.

We call the operator u 7→ Duu the Bogomol’nyi operator. In particular, energy is
always nonnegative. Due to (1.8) and the Hamitonian structure, any static solutions
to (CSS) are given by solutions to the Bogomol’nyi equation:

(1.10) DQQ = 0.

For m ≥ 0, there is an explicit m-equivariant static solution (Jackiw–Pi vortex)
to the Bogomol’nyi equation which is unique up to the symmetries of the equation
[11]:

(1.11) Q(r) =
√
8(m+ 1)

rm

1 + r2m+2
, m ≥ 0.

Note that we suppressed the m-dependences in Du and Q for the simplicity of no-
tation. Compared to the NLS case where the solitons exhibit exponential (spatial)

1The physical interpretation of the quantity M [u] is the total charge, but in this paper we shall
call it mass following the widespread convention for NLS.
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decays, in the CSS case the solitons only have polynomially decaying tails. Ap-
plying the pseudoconformal transform (1.5) to Q, we obtain an explicit finite-time
blow-up solution:

S(t, r) :=
1

|t|Q
( r
|t|

)
e−ir2/4|t|, t < 0,

which blows up at t = 0 with the pseudoconformal blow-up rate |t|. We note that
S(t) has finite energy if and only if m ≥ 1.

Let us briefly mention some known results on the Chern–Simons–Schrödinger
equation without symmetry. The local well-posedness has been studied by many
authors [2, 10, 27, 25], but the best known result by Liu–Smith–Tataru [27] still
misses the critical L2-space. There are also results on the long-term dynamics
[2, 3, 37].

For the equivariant self-dual Chern–Simons–Schrödinger equation, i.e., (CSS),
much more is known. Because there is no derivative nonlinearity, using only the
Strichartz estimates, (CSS) can be shown to be well-posed in the critical space L2

[26, Section 2]. Liu–Smith [26] proved the following subthreshold theorem: for m ≥
0, any m-equivariant L2-solutions u with M [u] < M [Q] scatter both forwards and
backwards in time. At the threshold mass M [u] = M [Q] (necessarily m ≥ 0), the
classification result of Li–Liu [24] says that either (i) u is a global scattering solution,
(ii) u(t) = Q, or (iii) u(t) = S(t) up to symmetries. The works [18, 19, 20, 22, 21]
by the author, Kwon, and Oh studied the dynamics above the threshold, which are
the main contents of this report.

2. Soliton resolution for (CSS)

In this section, we discuss the soliton resolution result [22] for (CSS). Most of
the materials in this section are borrowed from [22].

It is widely believed that, for large data under generic assumptions, the maxi-
mal solutions asymptotically decompose into the sum of decoupled solitons and a
radiation. This is referred to as the soliton resolution conjecture. This has been
known for a wide range of completely integrable equations, but it is mostly open
for non-integrable models. To our knowledge, the only known cases are the ra-
dial critical nonlinear wave equation and energy-critical equivariant wave maps
[8, 9, 7, 5, 15, 16].

Our first result in this report is soliton resolution for the equivariant self-dual
Chern–Simons–Schrödinger equation in a suitable weighted Sobolev class [22]. Let
us denote the modulated soliton by

Qλ,γ(r) :=
eiγ

λ
Q
( r
λ

)
, λ ∈ (0,∞), γ ∈ R/2πZ.

We also denote by H1,1
m and H1

m the (weighted) Sobolev spaces H1,1 and H1 re-
stricted to m-equivariant functions.

Theorem 2.1 (Soliton resolution for equivariantH1,1-data [22]). Let m ∈ Z. When
m ≥ 0, we have soliton resolution for H1,1

m -solutions:
• (Finite-time blow-up solutions) If u is a H1

m-solution to (CSS) that blows
up forwards in time at T < +∞, then u(t) admits the decomposition

(2.1) u(t, ·)−Qλ(t),γ(t) → z∗ in L2 as t→ T−,

for some λ(t) ∈ (0,∞), γ(t) ∈ R/2πZ, and z∗ ∈ L2 with the following
properties:

– (Further regularity of z∗) We have ∂rz∗, 1r z
∗ ∈ L2. Moreover, if u is

a H1,1
m finite-time blow-up solution, then we also have rz∗ ∈ L2.
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– (Bound on the blow-up speed) As t→ T , we have

(2.2) λ(t) ≲M [u]

√
E[u](T − t).

When m = 0, we further have the improved bound as t→ T

(2.3) λ(t) ≲M [u]

√
E[u](T − t)

| log(T − t)|1/2 .

• (Global solutions) If u is a H1,1
m -solution to (CSS) that exists globally for-

wards in time, then either u(t) scatters forwards in time, or u(t) admits the
decomposition

(2.4) u(t, ·)−Qλ(t),γ(t) − eit∆
(−m−2)

u∗ → 0 in L2 as t→ +∞,

for some λ(t) ∈ (0,∞), γ(t) ∈ R/2πZ, and u∗ ∈ L2 with the following
properties:

– (Further regularity of u∗) We have ∂ru∗, 1ru
∗, ru∗ ∈ L2.

– (Bound on the scale) As t→ +∞, we have

(2.5) λ(t) ≲M [u]

√
E[Cu],

where Cu is the pseudoconformal transform (1.5) of u. When m = 0,
we further have as t→ +∞

(2.6) λ(t) ≲M [u]

√
E[Cu]

| log t|1/2 .

On the other hand, when m < 0, any H1,1
m -solution to (CSS) scatters forwards in

time. Due to the time-reversal symmetry,2 all the above statements also hold for
backward-in-time evolutions.

Remark 2.2 (The dynamics for m ≥ 0 and m < 0). The dynamics of (CSS) for
m ≥ 0 and m < 0 are completely different. In fact, we will show that (CSS) for
m < 0 is defocusing in the sense that energy is globally coercive:

(2.7) E[u] ∼M [u] ∥u(t)∥2Ḣ1
m
.

Hence there are no nontrivial Jackiw–Pi vortices for m < 0.

Remark 2.3 (Nonexistence of multi-solitons). It is remarkable that at most one
soliton can appear in the resolution. This is a distinctive feature of (CSS). Indeed,
as a consequence of the self-duality and non-locality, we observe a defocusing nature,
i.e., the strict positivity of the energy, of (CSS) in the exterior of the soliton profile.
Hence two solitons at different scales cannot exist simultaneously. We will obtain
this defocusing nature by combining our two observations: (i) (CSS) at the exterior
of soliton resembles (CSS) for m < 0 (observed in [18]) and (ii) the defocusing
nature (2.7) when m < 0.

Even without equivariant symmetry, by essentially the same mechanism, we ex-
pect that there is no bubble tree (i.e., a multi-soliton separated only by scales) for
the self-dual Chern–Simons–Schrödinger equation. However, multi-solitons sepa-
rated by spatial distances may exist.

Remark 2.4 (Regularity assumptions on data). As seen in the above, we cover all
H1

m finite-time blow-up solutions. For global solutions, we reduce the situation to
the H1

m finite-time blow-up case using the spirit of the pseudoconformal transform,

2There is a time reversal symmetry for the covariant Chern–Simons–Schrödinger equation, but
it does not flip the equivariance index. See [18] for more details. Thus the distinction of the cases
m ≥ 0 and m < 0 is not contradictory.
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which requires the H1,1
m -assumption. Note that E[Cu] is well-defined for H1,1

m -
solutions u. Soliton resolution for any global H1

m-solutions (or, more ambitiously
L2
m-solutions) is an interesting open problem.

Remark 2.5 (Comparison with (NLS)). For the finite-time blow-up case, there are
similar results [38, 31] in (NLS) for solutions having slightly supercritical mass
(i.e., M [u]−M [Q] ≪ 1). Under this assumption, a standard variational argument
in the blow-up scenario ensures that solutions eventually undergo the near-soliton
dynamics in the L2-topology. Note that in Theorem 2.1 we do not have L2-proximity
to solitons.

For the near-soliton dynamics of (NLS), it is known from [38] that any finite
energy finite-time blow-up solutions satisfy either λ(t) ∼ ((T−t)/ log | log(T−t)|)1/2
or λ(t) ≲ (T − t). The former log-log rate essentially arises from negative energy
solutions, which is impossible for the self-dual (CSS). It is expected that such log-log
rate is possible for the focusing non-self-dual (CSS) [3].

Remark 2.6 (Bounds for scaling parameter). When m ≥ 1, the explicit blow-up
solution S(t) and the pseudoconformal blow-up solutions constructed in [18, 19] are
finite energy finite-time blow-up solutions that saturate the bound (2.2). Similarly,
the soliton Q itself saturates (2.5). It is an interesting open problem whether blow-
up rates other than the pseudoconformal one is possible or not for finite energy
finite-time blow-ups when m ≥ 1. The analogous problem in (NLS) also remains
open since the work of Merle and Raphaël.

When m = 0, the blow-up solution S(t) and the soliton Q do not satisfy the
bounds (2.3) and (2.6), respectively. This is consistent with Theorem 2.1 because
Q does not belong toH1,1

0 and the explicit blow-up solution S(t) does not have finite
energy, and hence Q and S(t) are not covered by our theorem. Note that (2.6) says
that any global-in-time nonscattering H1,1

0 -solution must blow up in infinite time.
On the other hand, the authors [20, 21] construct finite energy finite-time blow-up
solutions with the speed λ(t) ∼ (T−t)| log(T−t)|−2 and λ(t) ∼ (T−t)p| log(T−t)|−1

for all p > 1, respectively (see Section 3.2 of this report). However, we do not know
whether the upper bound (2.3) is sharp or not.

Remark 2.7 (On the phase rotation parameter). The phase rotation parameter does
not necessarily stabilize as t → T (or t → +∞). Indeed, the finite-time blow-up
solutions constructed in [21] for the m = 0 case exhibit infinite amount of phase
rotations. The m ≥ 1 case is open.

Strategy of the proof. Our key input is the nonlinear coercivity of energy (2.10)
after extracting out the soliton profile, which holds for solutions with possibly large
mass. As explained in Remark 2.3, this nonlinear coercivity is a consequence of the
self-duality and non-locality, which are distinctive features of (CSS).

Step 1. Reduction to the finite-time blow-up case.
It suffices to consider the finite-time blow-up case, thanks to theH1,1-assumption

for the global case and the pseudoconformal transform. Now consider a H1
m finite-

time blow-up solution u. By the blow-up criterion,

(2.8) ∥u(t)∥Ḣ1
m
→ +∞ but E[u(t)] is conserved.

For m < 0, we need to derive a contradiction. For m ≥ 0, we need to show that u
decomposes as in Theorem 2.1.

Step 2. Global coercivity of energy and contradiction for the m < 0 case.
We claim (2.7). Assuming this claim, we obtain a contradiction to (2.8). Thus

it suffices to show (2.7). We first use the self-duality (1.8):

E[u] =
1

2

ˆ

|Duu|2 =
1

2

ˆ ∣∣∣
(
∂r −

m+Aθ[u]

r

)
u
∣∣∣
2

.
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We recall that Aθ[u] = − 1
2

´∞
0

|u|r′dr′ is always non-positive with the bound

0 ≤ −Aθ[u] ≤
M [u]

4π
.

Note that m is also negative. Thus we can expect that the Cauchy–Riemann
operator Du enjoys a suitable Hardy inequality and this is in fact true:

ˆ ∣∣∣
(
∂r −

m+Aθ[u]

r

)
f
∣∣∣
2

≥ C(m,M [u])∥f∥2
Ḣ1

m
, ∀f ∈ Ḣ1

m.

The point is that the constant C depends only on M [u], which is a conserved
quantity. See [22, Lemma 3.1] for a rigorous proof. This gives (2.7).

Step 3. Variational argument for m ≥ 0.
We turn to the case of m ≥ 0. By (2.8), the ratio

√
E[u(t)]/∥u(t)∥Ḣ1

m
goes to

zero. Using a soft argument and the uniqueness of zero energy solutions, one can
show that u(t) admits a decomposition

(2.9) u(t) = [Q+ ε(t, ·)]λ(t),γ(t) with ∥ε(t)∥Ḣ1 → 0.

We remark that the L2-norm cannot be used as a measure of proximity, because
we do not assume that the mass of u is close to that of Q. We also remark that this
decomposition heavily relies on the uniqueness of zero energy solutions (thanks to
the self-duality), and hence this is not available for the NLS for arbitrary solutions
with large mass.

Step 4. Nonlinear coercivity of energy.
For the proof of Theorem 2.1, the qualitative information ∥ε(t)∥Ḣ1 → 0 is not

sufficient. Our next crucial input is the following nonlinear coercivity of the energy :

(2.10) E[Q+ ε] ≳∥ε∥L2
∥ε∥2

Ḣ1

for ε satisfying the orthogonality conditions and ∥ε∥Ḣ1 ≪ 1. Here, the point is
that the coercivity holds even for ∥ε(t)∥L2 ≳ 1. If we were to have L2-smallness
∥ε(t)∥L2 ≪ 1, then all the higher order terms of E[Q+ε] are perturbative and (2.10)
is merely a consequence of the linear coercivity (around Q). When ε(t) has large
L2-norm, the higher order terms of E[Q + ε] are no longer perturbative. Instead,
we have (using the self-duality (1.8))

E[Q+ ε] =
1

2

ˆ

|DQ+ε(Q+ ε)|2

≈ 1

2

ˆ

|LQ(χRε)|2 +
∣∣∣
(
∂r −

m+Aθ[Q] +Aθ[ε]

r

)(
(1− χR)ε

)∣∣∣
2

,

where LQ is the linearized Bogomol’nyi operator around Q. The interior term is
simply handled by a localized version of the linear coercivity for LQ. However, the
exterior term contains non-perturbative higher order terms like |Aθ[ε]

r ε|2. At this
point, we use the non-locality of the problem, particularly the fact that m+Aθ[Q] ≈
−(m+2) is negative. Thus the exterior term can be viewed as the energy of ε for the
−(m+2)-equivariant (CSS). Using the boundary condition [(1−χR)ε](R) = 0 and
the fact that both m + Aθ[Q] and Aθ[ε] are negative, we can prove unconditional
coercivity for the exterior term, in the similar spirit with the proof in Step 2. As a
result, the nonlinear coercivity of energy (2.10) follows.

Step 5. Completion of the proof.
The proof of (2.2) is standard and very similar to the pseudoconformal regime

in Raphaël [38]. Indeed, a standard modulation analysis yields |λλt| ≲ ∥ε∥Ḣ1
m

.
Applying the nonlinear coercivity (2.10) of energy, we get

|λt| ≲
1

λ
∥ε∥Ḣ1

m
≲ 1

λ

√
E[Q+ ε] =

√
E[u],

whose integration yields the bound (2.2).
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The proof of the improved bound (2.3) for m = 0 requires an additional trick, us-
ing the logarithmic divergence ∥1y≤RyQ∥L2 ∼ √

logR and the generalized nullspace
relations of the linearized operator iLQ (of (CSS) around Q). We refer to [22] for
this part.

Finally, the existence of the asymptotic profile z∗ as in (2.1) as well as its reg-
ularity can be proved in a very similar manner to Merle–Raphaël [31]. To obtain
z∗ as the strong L2-limit of ε♯(t) = u(t) − Qλ(t),γ(t) as t → T−, we again take
advantage of the nonlinear coercivity of energy in the form ∥ε♯(t)∥H1

m
≲ 1. This

means that ε♯(t) (and hence z∗) is not only controlled on the obvious soliton scale
r ≲ λ, but also up to scale r ≲ 1.

3. Blow-up dynamics and rotational instability

In this section, we discuss the results of [18, 19, 20, 21] by the author, Kwon, and
Oh on the blow-up dynamics for (CSS). The discussion here will be less rigorous and
detailed than in the previous section. We borrow the materials from [18, 19, 20, 21].

From now on, we would like to study the refined description of the dynamics.
We focus on finite-time blow-up for finite energy solutions. By Theorem 2.1, m ≥ 0
necessarily and any such solution u(t) decomposes as

u(t, r)− eiγ(t)

λ(t)
Q
( r

λ(t)

)
→ z∗(r) as t→ T−

with z∗ ∈ H1 and λ(t) satisfying (2.2)–(2.3). In view of S(t) ∈ H1 if and only if
m ≥ 1, we separate into two cases.

• High equivariance case m ≥ 1: Section 3.1, following [18, 19].
• Radial case m = 0: Section 3.2, following [20, 21].

3.1. Pseudoconformal blow-up solutions and rotational instability. In this
subsection, we consider the high equivariance case m ≥ 1. Recall that the explicit
finite-time blow-up solution S(t) has finite energy and satisfies

S(t, r)− 1

|t|Q
( r
|t|

)
→ 0 in L2 as t→ 0.

We will study pseudoconformal blow-up solutions, namely, finite energy finite-time
blow-up solutions u(t) satisfying

u(t, r)− eiγ(t)

λ(t)
Q
( r

λ(t)

)
→ z∗(r) in L2 as t→ T− with λ(t) ≈ C(u) · (T − t),

and the dynamics near these blow-up solutions.
Our first result is on the construction and their instability mechanisms of pseu-

doconformal blow-up solutions.

Theorem 3.1 (Construction of pseudoconformal blow-up solutions [18]). Given
the asymptotic profile z∗(r) that is small, smooth, and degenerate at the origin
(i.e., |z∗(r)| ≲ rK for K large), there exists a solution u(t, r) such that

u(t, r)− 1

|t|Q
( r
|t|

)
→ z∗(r) in L2 as t→ 0.

The above theorem is a (CSS)-analogue of the Bourgain–Wang solutions for
(NLS). However, an interesting dynamics differing from the (NLS) one arises when
we look at the instability mechanism of the pseudoconformal blow-up solutions.
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Theorem 3.2 (Rotational instability [18]). With the same hypothesis as above,
there exists a continuous one-parameter family of solutions {u(η)}η≥0 such that

u(η)(t, r) ≈ eiγ
(η)(t)

λ(η)(t)
Q
( r

λ(η)(t)

)
+ z∗(r) for t near 0,

where
• u(0) is the pseudoconformal blow-up solution constructed in Theorem 3.1.
• If η ̸= 0, u(η) scatters both forwards and backwards in time, and

λ(η)(t) =
√
t2 + η2,

γ(η)(t) = sgn(η)(m+ 1)
{
tan−1

( t

|η|
)
− π

2

}
.

We believe that the same result holds true for η ≤ 0.

Remark 3.3 (Rotational instability). Recall that the pseudoconformal blow-up so-
lution u(0) does not exhibit any phase rotation. However, once η ̸= 0, the solution
u(η) stops concentrating at the scale r ∼ |η| but rather shows an abrupt phase
rotation by the fixed amount of angle, (m+ 1)π, in a short time interval of length
∼ |η|. It then spreads out like a backward pseudoconformal blow-up solution.

Rotational instability is not a unique feature of (CSS). In more general contexts,
rotational instability is also expected for other critical geometric equations such as
the wave maps, harmonic map heat flows, and Schrödinger maps from R1+2 into S2
[1, 33]. Theorem 3.2 rigorously constructs, up to our knowledge for the first time,
a continuous curve of solutions exhibiting rotational instability.

Remark 3.4 (Comparison with (NLS)). The instability of Bourgain–Wang solutions
for (NLS) was studied by Merle–Raphaël–Szeftel [35]. However, the instability
mechanisms for (NLS) and (CSS) turn out to be completely different. In the (NLS)
case, on one side (say η > 0) u(η) are global scattering solutions, but on the other
side (say η < 0) u(η) blows up forwards in time under the log-log regime. The
difference of the instability mechanisms is due to the difference of the structure of
linearized operators around solitons in each case.

Remark 3.5 (Comments on the proof). The overall strategy is the method of back-
ward construction with modulation analysis. One constructs a sequence of solutions
u(η), proves uniform controls on the dynamics, and take the limit η → 0 to obtain
a blow-up solution. Of course, the continuity of the solution family in η should
be proved separately. This kind of argument goes back to Merle [29], Martel [28],
Raphaël–Szeftel [41], and Merle–Raphaël–Szeftel [35], where the last work is the
most relevant to ours.

Compared to the (NLS) case, there are several additional difficulties in the (CSS)
case. First, as the instability mechanism is completely different, one needs to
construct new modified blow-up profiles (say P (·; b, η) satisfying P (·; b, η) → Q
as b, η → 0) and find evolution laws for these additional modulation parameters b
and η. In [18], motivated from the self-duality, we found a remarkable nonlinear
ansatz for the modified profiles, which reduces a second-order nonlocal integro-
differential equation to a first-order nonlocal ODE. Second, there are nontrivial
interactions between the soliton Qλ(t),γ(t) and the radiation (i.e., a regular function
z(t, r) achieving z(0, r) = z∗(r)) from the nonlocal gauge potentials A. From the
Aθ-potential, since m + Aθ[Qλ,γ + z] ≈ −(m + 2) + Aθ[z] (see the angular part of
the covariant Laplacian in (CSS)), we need to evolve z(t, r) using the −(m + 2)-
equivariant (CSS). The At-potential contains nontrivial phase correction to Qλ,γ

from z. Finally, the Lyapunov functional which controls the remainder part of the
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solution needs a further correction (the mass correction). We refer to [18] for more
details.

We complement our instability result by showing that the pseudoconformal blow-
up can arise from a codimension one set of initial data.

Theorem 3.6 (Codimension one data set for pseudoconformal blow-up [19]). There
is a codimension one set of (smooth) initial data u0(r) such that the forward-in-time
evolution u(t, r) is a pseudoconformal blow-up solution.

Remark 3.7 (Comparison with critical geometric equations). In the proof of Theo-
rem 3.6, we found a simple but interesting identity, which we call the linear conju-
gation identity, that establishes an unexpected connection between (CSS) and other
critical geometric equations such as the wave maps, harmonic map heat flows, and
Schrödinger maps from R1+2 into S2. This identity takes the form

(3.1) LQiL
∗
Q = iHQ,

where LQ is the linearized operator of the Bogomol’nyi operator u 7→ Duu around Q
and HQ is the linearized operator arising in the aforementioned critical geometric
equations. Experiences from these equations allow us to reveal a hidden repulsivity
(or, monotonicity) in the linearized (CSS) dynamics.

Remark 3.8 (Comments on the proof). For the proof of Theorem 3.6, we again
use modulation analysis. The overall scheme is the method of forward construc-
tion with repulsivity, developed through the works of Rodnianski–Sterbenz [42],
Raphaël–Rodnianski [39], Merle–Raphaël–Rodnianski [33, 34], and Collot [4]. We
employ the blow-up profile of [18], incorporate phase corrections from the nonlo-
cal nonlinearities, and most importantly, exploit the repulsivity in Remark 3.7 to
control the remainder part of the solution.

Theorems 3.2 and 3.6 naturally suggest the following rotational instability con-
jecture:

Conjecture 3.9 (Rotational instability conjecture). Let m ≥ 1. There is a
codimension-one manifold M of (smooth) initial data with the following proper-
ties.

• If u0 ∈ M, then the associated forward-in-time solution u(t) is a pseudo-
conformal blow-up solution.

• If u0 /∈ M but is near to M, then the solution u(t) does not blow up and
rather exhibits rotational instability.

If u0 has mass slightly above the mass of Q, we further conjecture that u(t) is a
global scattering solution.

3.2. Finite-time blow-up solutions in the radial case. In this subsection, we
consider the radial case m = 0. The radial case (m = 0) turns out to be the most
delicate due to the weakest spatial decay of Q and the weakest repulsivity associated
with the linearized operator. However, it is also the case that is the most physically
relevant because Q is the ground state without symmetry. Note that S(t) is no
longer a finite energy solution and the pseudoconformal blow-up is ruled out by
Theorem 2.1. Thus it is natural to ask if finite energy finite-time blow-up solutions
exist.

Our first result is the (forward) construction of smooth finite-time blow-up so-
lutions. We note that the constructed solutions not only have finite energy but are
also smooth. Moreover, by construction these solutions arise from a codimension
one set of initial data.
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Theorem 3.10 (Smooth finite energy finite-time blow-up solutions [20]). There is
a codimension one set of smooth finite energy radial initial data u0(r) such that the
forward-in-time evolution u(t, r) blows up in finite time (say T <∞) and

u(t, r)− eiγ
∗

λ(t)
Q
( r

λ(t)

)
→ z∗ in L2, λ(t) ≈ λ∗

T − t

| log(T − t)|2

as t→ T , for some γ∗ ∈ R, λ∗ ∈ R+, and z∗ ∈ H1.

Remark 3.11. One can take u0 ∈ C∞
c and u0 arbitrarily close to Q in the L2-

topology. Moreover, applying the pseudoconformal transform, one can construct
infinite-time blow-up solutions with λ(t) ∼ (log t)2 as t→ +∞.

Remark 3.12 (Finite energy solution). A logarithmic derivation from the pseudo-
conformal rate stems from the fact that S(t) has infinite energy. In the (NLS)
context, the well-known log-log blow-up rate [30, 32], which deviates from the self-
similar rate by a log-log factor, is due to the fact that the exact self-similar solutions
to (NLS) barely fail to lie in L2. A similar remark applies to the wave maps case
[39].

Remark 3.13 (Comments on the proof). As for the proof of Theorem 3.6, we use
the method of forward construction with repulsivity. On top of this existing road
map, the key new input is a systematic use of nonlinear covariant conjugation
identities. In short, this is a simple idea that we not only look at the equation
for the original variable u, but do we also look at the system of evolution equa-
tions for the nonlinearly conjugated variables u1 = Duu, and u2 = AuDuu, where
Au = (Du − 1/y). Compared to the previously used linear adapted derivatives,
these nonlinear conjugations better respect the full nonlinear evolution. Moreover,
these variables enjoy degeneracies; indeed, proceeding to the variable u1 = Duu
kills the Qλ,γ-part in view of DQQ = 0 and further proceeding to the variable
u2 = AuDuu even annihilates the generalized null modes. One of the most advan-
tageous simplifications from these nonlinear conjugations and degeneracies is that
the evolution equation for u2 isolates the evolution of the remainder term (denoted
by ε2) very well, while keeping the structure simple. In particular, most of the
non-perturbative terms in the original ε-equation disappear, and in the ε2-equation
there is only one non-perturbative term, which is moreover local. This enables us
to identify a Morawetz-type correction term when we perform (modified) energy
estimates. To put it differently, if one proceeds only with the variable ε, then the
correction terms must be quite complicated, even involving some nonlocal (integral)
expressions, that would be difficult to be found. We refer to [20, Section 1.4] for
more detailed explanations.

On the other hand, by the method of backward construction, one can show that
there is a continuum of possible blow-up rates for finite energy solutions.

Theorem 3.14 (Continuum of blow-up rates [21]). For q ∈ C\{0} and Re(ν) > 0,
set

z∗(r) = qrνχ(r).

Then, there exists a finite energy finite-time blow-up solution u(t, r) such that

u(t, r)− eiγq,ν(t)

λq,ν(t)
Q
( r

λq,ν(t)

)
→ z∗ in L2 as t→ 0−

with

λq,ν(t)e
iγq,ν(t) = cν · q |t| ν2+1

| log |t|| , in particular λq,ν(t) ∼q,ν
|t|Re(ν)

2 +1

| log |t|| .
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Remark 3.15. By Theorem 2.1, the range of ν is optimal. When Im(ν) ̸= 0, the
blow-up solution u exhibits infinite amount of phase rotation. Infinite-time blow-up
solutions can be constructed by applying the pseudoconformal transform.

Remark 3.16 (Strongly interacting regime). The blow-up in Theorem 3.14 is driven
by the strong soliton-radiation interaction. We exploit the fact that Q ∼ ⟨y⟩−2

has the slowest spatial decay in the m = 0 case, and the analysis does not work
in the high equivariance case m ≥ 1. Thus in the m ≥ 1 case, the existence of
blow-up rates other than the pseudoconformal one still remains as an interesting
open problem.

Remark 3.17 (Regularity of the blow-up solution). Compared to Theorem 3.10,
Theorem 3.14 provides more examples of blow-up rates for finite energy solutions.
However, Theorem 3.14 does not tell about the regularity of blow-up solutions more
than H1. We believe that these solutions in general have limited regularity as in
[23] and C∞ finite-time blow-up solutions are only allowed to have quantized rates.
We refer to [36, 40, 34].

Remark 3.18 (Comments on the proof). As in the proof of Theorem Theorem
3.1–3.2, we use the method of backward construction. The scheme of the proof
is much inspired from the recent work of Jendrej–Lawrie–Rodriguez [17] for the
1-equivariant wave maps, where in particular profile modifications are not used.
We extend their arguments to the NLS setting.

However, due to the lack of finite speed of propagation in the Schrödinger setting,
the construction of the radiation z(t, r) and the justification of necessary asymp-
totics from z∗(r) = qrνχ(r) are nontrivial. More precisely, we need to justify the
asymptotics z(t, r) ≈ qcν |t|(ν−2)/2r2 in the self-similar region r ≲ |t|1/2. When
Re(ν) is large, as the leading term itself degenerates (a large power of t), we need
to approximate z(t, r) up to errors of sufficiently large powers of t. When Re(ν) > 0
is small, it is necessary to understand the structure of the singular part of z(t, r).
This is because z∗(r) has limited regularity H1+ν− but the justification of the
asymptotics would require higher Sobolev regularity (e.g., H3+). In this case, we
explicitly identify the singular part ẑ of z and show that z − ẑ belongs to H3+.
We believe that this part of proof, namely the construction of the radiation, is of
independent interest.
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