We review some recent results on the scattering structure of the linearized Vlasov-Poisson equation in space dimension. It started with [9] where the linearized Vlasov-Poisson equation is rewritten as a linear Vlasov-Ampère set of equations which makes the structure more visible. A consequence is that the linear Landau damping becomes an application of the scattering theory for Hamiltonian systems. Then we review the extension, firstly of the linearization around non homogeneous profiles which is treated with the theory of trace-class operators, secondly of the case with a forcing magnetic field which has the ability to eliminate the possibility of a linear Landau damping effect. Finally, we evoke some possibility for extension to space dimension with .
@article{SLSEDP_2019-2020____A10_0, author = {Bruno Despr\'es}, title = {The linear {Vlasov-Poisson-Amp\`ere} equation from the viewpoint of abstract scattering theory}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:1}, pages = {1--12}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2019-2020}, doi = {10.5802/slsedp.144}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.144/} }
TY - JOUR AU - Bruno Després TI - The linear Vlasov-Poisson-Ampère equation from the viewpoint of abstract scattering theory JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:1 PY - 2019-2020 SP - 1 EP - 12 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.144/ DO - 10.5802/slsedp.144 LA - en ID - SLSEDP_2019-2020____A10_0 ER -
%0 Journal Article %A Bruno Després %T The linear Vlasov-Poisson-Ampère equation from the viewpoint of abstract scattering theory %J Séminaire Laurent Schwartz — EDP et applications %Z talk:1 %D 2019-2020 %P 1-12 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.144/ %R 10.5802/slsedp.144 %G en %F SLSEDP_2019-2020____A10_0
Bruno Després. The linear Vlasov-Poisson-Ampère equation from the viewpoint of abstract scattering theory. Séminaire Laurent Schwartz — EDP et applications (2019-2020), Talk no. 1, 12 p. doi : 10.5802/slsedp.144. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.144/
[1] C. Bardos and P. Degond, Existence globale et comportement asymptotique de la solution de l’équation de Vlasov-Poisson, C.R. Acad. Sc. Paris, t. 297, 321–324, 1983. | DOI | Zbl
[2] J. Barré, A. Olivetti and Y.Y. Yamaguchi, Dynamics of perturbations around inhomogeneous backgrounds in the HMF model, Journal of Statistical Mechanics: Theory and Experiment, Volume 2010, 2010. | DOI
[3] J. Barré, A. Olivetti and Y.Y. Yamaguchi, Landau damping and inhomogeneous reference states, Comptes Rendus Physique, Volume 16, Issue 8, Pages 723-728, 2015. | DOI
[4] J. Bedrossian and F. Wang, The linearized Vlasov and Vlasov-Fokker-Planck equations in a uniform magnetic field, , 2018. | arXiv | DOI | MR | Zbl
[5] I. B. Bernstein, Waves in a plasma in a magnetic field, Phys. Rev., 109 (1), 10, 1958. | DOI | MR | Zbl
[6] A. Campa and P.H. Chavanis, Dynamical stability criterion for inhomogeneous quasi-stationary states in long-range systems, Journal of Statistical Mechanics: Theory and Experiment, Issue 06, pp. 06001, 2010. | DOI | Zbl
[7] K.M. Case, Plasma oscillations, Annals of Physics, 349-364, 1959. | DOI | MR | Zbl
[8] F. Charles, B. Després, A. Rege and R. Weder, The magnetized Vlasov-Ampère system and the Bernstein-Landau paradox. J. Stat. Phys. 183 (2021), no. 2, Paper No. 23. | DOI
[9] B. Després, Symmetrization of Vlasov-Poisson equations. SIAM J. Math. Anal. 46 (2014), no. 4, 2554-2580. | DOI | MR | Zbl
[10] B. Després, Scattering Structure and Landau Damping for Linearized Vlasov Equations with Inhomogeneous Boltzmannian States. Ann. Henri Poincaré 20 (2019), no. 8, 2767-2818. | DOI | MR | Zbl
[11] B. Després, Trace class properties of the non homogeneous linear Vlasov-Poisson equation in dimension 1+1, Journal of Spectral theory (2020). | DOI | MR | Zbl
[12] P. Degond, Spectral theory of the linearized Vlasov-Poisson equation, Trans. of the AMS, 294, 1986, 435-453. | DOI | MR | Zbl
[13] R.J. Diperna and P.L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. on Pure and App. Math., Vol. XLII, 729-757, 1989. | DOI | MR | Zbl
[14] E. Faou and F. Rousset, Landau Damping in Sobolev Spaces for the Vlasov-HMF Model, Archive for Rational Mechanics and Analysis 2016, Volume 219, Issue 2, pp 887-902. 2016. | DOI | MR | Zbl
[15] F. Golse, B. Perthame and R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la valeur propre principale d’un opérateur de transport, C. R. Acad. Sci. Paris 301 (1985), 341-344. | DOI | Zbl
[16] F. Golse, P.L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation, Journal of Func. Ana., 76, 110-125, 1988. | DOI | MR | Zbl
[17] T. Kato, Wave operator and unitary equivalence, Pacific journal of mathematics, 15, 1, 1965. | DOI | MR | Zbl
[18] L. Landau, J . Phys. USSR, 10, (1946) 25. | DOI
[19] P.D. Lax, Functional analysis, Wiley-Interscience, 2002. | DOI | Zbl
[20] M. Lemou, F. Mehats, P. Raphael, A new variational approach to the stability of gravitational systems, Comm. Math. Phys. 302 (2011). | DOI | MR | Zbl
[21] P. J. Morrison, Hamiltonian Description of Vlasov Dynamics: Action-Angle Variables for the Continuous Spectrum, Transport theory and statistical physics, 29(3-5), 397-414, 2000. | DOI | MR | Zbl
[22] O. Penrose, Electrostatic instabilities of a uniform non-maxwellian plasma. Physics of Fluids, 3(2):258-265, 1960. | DOI | Zbl
[23] C. Mouhot, Stabilité orbitale pour le système de Vlasov-Poisson gravitationnel, Séminaire Bourbaki, 2012, number 1044. | DOI
[24] C. Mouhot and C. Villani, On Landau damping, Acta Math. 207 (2011), no. 1, 29–201. | DOI | MR | Zbl
[25] M. Reed and B. Simon, Methods of modern mathematical physics: III Scattering theory, Academic Press, 1979. | DOI | Zbl
[26] Sukhorukov and P. Stubbe, On the Bernstein-Landau paradox, PoP, 1997 | DOI
Cited by Sources: