This is the document corresponding to the talk the first author gave at IHÉS for the Laurent Schwartz seminar on November 19, 2019. It concerns our recent introduction of a modulated free energy in mean-field theory in [4]. This physical object may be seen as a combination of the modulated potential energy introduced by S. Serfaty [See Proc. Int. Cong. Math. (2018)] and of the relative entropy introduced in mean field limit theory by P.–E. Jabin, Z. Wang [See Inventiones 2018]. It allows to obtain, for the first time, a convergence rate in the mean field limit for Riesz and Coulomb repulsive kernels in the presence of viscosity using the estimates in [8] and [20]. The main objective in this paper is to explain how it is possible to cover more general repulsive kernels through a Fourier transform approach as announced in [4] first in the case when and then if is fixed. Then we end the paper with comments on the particle approximation of the Patlak-Keller-Segel system which is associated to an attractive kernel and refer to [C.R. Acad Science Paris 357, Issue 9, (2019), 708–720] by the authors for more details.
@article{SLSEDP_2019-2020____A1_0, author = {Didier Bresch and Pierre-Emmanuel Jabin and Zhenfu Wang}, title = {Modulated free energy and mean~field~limit}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:2}, pages = {1--22}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2019-2020}, doi = {10.5802/slsedp.135}, zbl = {07124517}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.135/} }
TY - JOUR AU - Didier Bresch AU - Pierre-Emmanuel Jabin AU - Zhenfu Wang TI - Modulated free energy and mean field limit JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:2 PY - 2019-2020 SP - 1 EP - 22 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.135/ DO - 10.5802/slsedp.135 LA - en ID - SLSEDP_2019-2020____A1_0 ER -
%0 Journal Article %A Didier Bresch %A Pierre-Emmanuel Jabin %A Zhenfu Wang %T Modulated free energy and mean field limit %J Séminaire Laurent Schwartz — EDP et applications %Z talk:2 %D 2019-2020 %P 1-22 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.135/ %R 10.5802/slsedp.135 %G en %F SLSEDP_2019-2020____A1_0
Didier Bresch; Pierre-Emmanuel Jabin; Zhenfu Wang. Modulated free energy and mean field limit. Séminaire Laurent Schwartz — EDP et applications (2019-2020), Talk no. 2, 22 p. doi : 10.5802/slsedp.135. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.135/
[1] D. Arsenio, L. Saint–Raymond. From the Vlasov Maxwell Boltzmann System to Incompressible Viscous Electro–magneto–hydrodynamics. EMS Monographs in Mathematics (2019). | DOI | Zbl
[2] A. Blanchet, J. Dolbeault, B. Perthame. Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions. Electronic Journal of Differential Equations [EJDE)[electronic only] (2006). | DOI | Zbl
[3] D. Bresch, P.–E. Jabin. Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor. Annals. of Math, 577–684, volume 188, (2018). | DOI | MR | Zbl
[4] D. Bresch, P.–E. Jabin, Z. Wang. On mean-field limits and quantitative estimates with a large class of singular kernels: Application to the Patlak-Keller-Segel model. C.R. Acad. Sciences Mathématiques, 357, Issue 9, (2019), 708–720. | DOI | MR | Zbl
[5] D. Bresch, P.–E. Jabin, Z. Wang. Mean field limit and quantitative estimates with a large class of singular kernels. In preparation (2019). | DOI | MR | Zbl
[6] P. Cattiaux, L. Pédèches. The 2-D stochastic Keller-Segel particle model: existence and uniqueness. ALEA Lat. Am. J. Probab Stat, 13 (1) (2016, 447–463. | DOI | MR | Zbl
[7] J. Dolbeault, B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in . C. R. Math. Acad. Sci. Paris 339, no. 9, 611–616, (2004). | DOI | MR | Zbl
[8] M. Duerinckx. Mean Field Limit for some Riesz interaction gradient flows. SIAM J. Math. Anal, 48, 3, (2016), 2269–2300. | DOI | MR | Zbl
[9] N. Fournier, B. Jourdain. Stochastic particle approximation of the Keller-Segel equation and two dimensional generalization of Bessel processes. Ann. Appl. Proba, 5 (2017), 2807–2861. | DOI | MR | Zbl
[10] D. Godinho, C. Quiñinao. Propagation of chaos for a sub-critical Keller-Segel Model. Ann. Inst. H. Poincaré Probab. Statist. 51, 965–992 (2015). | DOI | MR | Zbl
[11] F. Golse. On the dynamics of large particle systems in the mean field limit. In: Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. Volume 3 of the series Lecture Notes in Applied Mathematics and Mechanics, pp. 1–144. Springer, (2016) | DOI
[12] D. Han-Kwan. Quasineutral limit of the Vlasov-Poisson system with massless electrons. Comm. Partial Diff. Eqs. 1385–1425, (2010). | DOI | MR | Zbl
[13] J. Haskovec, C. Schmeiser. Convergence of a stochastic particle approximation for measure solutions of the 2D Keller-Segel system. Comm. Partial Differential Equations 36, 940–960 (2011). | DOI | MR | Zbl
[14] P.–.E. Jabin. A review for the mean field limit for Vlasov equations. Kinet. Relat. Models 7, 661–711 (2014). | DOI | MR | Zbl
[15] P.–E. Jabin, Z. Wang. Quantitative estimates of propagation of chaos for Stochastic systems with kernels. Inventiones, 214 (1), (2018), 523–591. | DOI | MR | Zbl
[16] P.–E. Jabin, Z. Wang. Mean field limit for stochastic particle systems. Volume 1: Theory, Models, Applications, Birkhauser-Springer (Boston), series Modelling and Simulation in Science Engineering and Technology (2017). | DOI
[17] M. Puel, L. Saint-Raymond. Quasineutral limit for the relativistic Vlasov–Maxwell system Asymptotic Analysis, vol. 40, no. 3,4, pp. 303–352, (2004). | DOI | MR | Zbl
[18] L. Saint-Raymond. Des points vortex aux équations de Navier-Stokes (d’après P.–E. Jabin et Z. Wang). In Séminaire Bourbaki, 70ème année, 2017–2018. | DOI
[19] S. Serfaty. Systems of points with Coulomb interactions, in Proc. Int. Cong. of Math. Rio de Janeiro, vol. 1, 2018, 935–978. | DOI | MR | Zbl
[20] S. Serfaty. Mean Field limit for Coulomb-type flows. Submitted for publication (2018). | DOI | MR | Zbl
[21] M. Tomasevic. On a probabilistic interpretation of the Keller-Segel parabolic-parabolic equations. PhD Thesis, Université Côte d’Azur, (2018). | DOI | MR
Cited by Sources: