@article{SLSEDP_2019-2020____A8_0, author = {Gr\'egoire Allaire and Agnes Lamacz and Jeffrey Rauch}, title = {Crime pays; homogenization for long times}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:11}, pages = {1--9}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2019-2020}, doi = {10.5802/slsedp.141}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.141/} }
TY - JOUR AU - Grégoire Allaire AU - Agnes Lamacz AU - Jeffrey Rauch TI - Crime pays; homogenization for long times JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:11 PY - 2019-2020 SP - 1 EP - 9 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.141/ DO - 10.5802/slsedp.141 LA - en ID - SLSEDP_2019-2020____A8_0 ER -
%0 Journal Article %A Grégoire Allaire %A Agnes Lamacz %A Jeffrey Rauch %T Crime pays; homogenization for long times %J Séminaire Laurent Schwartz — EDP et applications %Z talk:11 %D 2019-2020 %P 1-9 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.141/ %R 10.5802/slsedp.141 %G en %F SLSEDP_2019-2020____A8_0
Grégoire Allaire; Agnes Lamacz; Jeffrey Rauch. Crime pays; homogenization for long times. Séminaire Laurent Schwartz — EDP et applications (2019-2020), Talk no. 11, 9 p. doi : 10.5802/slsedp.141. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.141/
[1] A. Abdulle, M. Grote, Ch. Stohrer, Finite element heterogeneous multiscale method for the wave equation: long-time effects, Multiscale Model. Simul. 12 (2014), pp.1230-1257. | DOI | MR | Zbl
[2] A. Abdulle & T. N. Pouchon, A priori error analysis of the finite element heterogeneous multiscale method for the wave equation in heterogeneous media over long time, preprint 2015. | DOI | MR | Zbl
[3] A. Abdulle & T. N. Pouchon, Effective models for the multidimensional wave equation in heterogeneous media over long time and numerical homogenization, Mathematical Models & Methods In Applied Sciences, vol. 26, num. 14 (2016). | DOI | MR | Zbl
[4] G. Allaire, M. Briane & M. Vanninathan, A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures, SEMA Journal 73(3), 237-259 (2016). | DOI | MR | Zbl
[5] G. Allaire, M. Palombaro, J. Rauch, Diffractive Geometric Optics for Bloch Wave Packets, Archive Rat. Mech. Anal., 202, pp.373-426 (2011). | DOI | MR | Zbl
[6] G. Allaire, T. Yamada, Optimization of dispersive coefficients in the homogenization of the wave equation in periodic structures, submitted. HAL preprint: hal-01341082 (July 2016). | DOI | MR | Zbl
[7] N. Bakhvalov, G. Panasenko, Homogenization: Averaging Processes in Periodic Media, Kluwer, Dordrecht (1989). | DOI | Zbl
[8] A. Benoit, A. Gloria, Long-time homogenization and asymptotic ballistic transport of classical waves, preprint. | DOI | Zbl
[9] A. Bensoussan, J.-L. Lions & G. Papanicolaou, Asymptotic analysis for periodic structures, corrected reprint of the 1978 original, AMS Chelsea Publishing, Providence, RI, (2011). | DOI
[10] S. Brahim-Otsmane, G. Francfort & F. Murat, Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl. (9) 71:197–231 (1992). | DOI | MR | Zbl
[11] C. Conca, R. Orive & M. Vanninathan, Bloch approximation in homogenization and applications, SIAM J. Math. Anal., 33 (5) (2002), 1166-1198. | DOI | MR | Zbl
[12] C. Conca, R. Orive & M. Vanninathan, On Burnett coefficients in periodic media, J. Math. Phys., 47 (3) (2006), 11 pp. | DOI | MR | Zbl
[13] T. Dohnal, A. Lamacz & B. Schweizer, Bloch-wave homogenization on large time scales and dispersive effective wave equations, Multiscale Model. Simul., 12 (2) (2014), 488-513. | DOI | MR | Zbl
[14] J. Fish, W. Chen, & G. Nagai, Non-local dispersive model for wave propagation in heterogeneous media: multi-dimensional case, Internat. J. Numer. Methods Engrg., 54(3):347-363, (2002). | DOI | MR | Zbl
[15] V Jikov, S. Kozlov, O. Oleinik, Homogenization of differential operators and integral functionals, Springer, Berlin, (1995). | DOI
[16] A. Lamacz, Dispersive effective models for waves in heterogeneous media, Math. Models Methods Appl. Sci., 21 (9) (2011), 1871-1899. | DOI | MR | Zbl
[17] D. Lannes, High-frequency nonlinear optics: from the nonlinear Schrödinger approximation to ultrashort-pulses equations, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), no. 2, 253-286. | DOI | Zbl
[18] J. Rauch, Hyperbolic partial differential equations and geometrics optics, volume 133 of Graduate Studies in Mathematics, American Mathematical Society (2012). | DOI | Zbl
[19] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer Lecture Notes in Physics 129 (1980). | DOI | Zbl
[20] F. Santosa, W. Symes, A dispersive effective medium for wave propagation in periodic composites, SIAM J. Appl. Math., 51 (1991), 984-1005. | DOI | MR | Zbl
[21] V. P. Smyshlyaev, K. D. Cherednichenko, On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media, The J. R. Willis 60th anniversary volume. J. Mech. Phys. Solids, 48 (6-7) (2000), 1325-1357. | DOI | MR | Zbl
Cited by Sources: