We review some recent results on transverse linear stability of line periodic traveling waves for the water-wave problem. A common feature of these results is that they can be obtained from two, rather simple, abstract stability criteria. While the first criterion gives sufficient conditions for linear instability, the second one, which is a counting result for unstable eigenvalues, leads to sufficient conditions for spectral stability. We restrict to waves of small amplitude bifurcating in four different parameter regimes. We focus on the simplest model equations, the Kadomtsev-Petviashvili I and II equations, and refer to existing works for other models, including the full Euler equations.
@article{SLSEDP_2018-2019____A14_0, author = {Mariana Haragus}, title = {Transverse linear stability of line periodic traveling waves for water-wave models}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:14}, pages = {1--12}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2018-2019}, doi = {10.5802/slsedp.133}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.133/} }
TY - JOUR AU - Mariana Haragus TI - Transverse linear stability of line periodic traveling waves for water-wave models JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:14 PY - 2018-2019 SP - 1 EP - 12 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.133/ DO - 10.5802/slsedp.133 LA - en ID - SLSEDP_2018-2019____A14_0 ER -
%0 Journal Article %A Mariana Haragus %T Transverse linear stability of line periodic traveling waves for water-wave models %J Séminaire Laurent Schwartz — EDP et applications %Z talk:14 %D 2018-2019 %P 1-12 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.133/ %R 10.5802/slsedp.133 %G en %F SLSEDP_2018-2019____A14_0
Mariana Haragus. Transverse linear stability of line periodic traveling waves for water-wave models. Séminaire Laurent Schwartz — EDP et applications (2018-2019), Talk no. 14, 12 p. doi : 10.5802/slsedp.133. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.133/
[1] J.C. Alexander, R.L. Pego, R.L. Sachs. On the transverse instability of solitary waves in the Kadomtsev-Petviashvili equation. Phys. Lett. A 226 (1997), 187-192. | DOI | MR | Zbl
[2] B. Buffoni, M.D. Groves, J.F. Toland. A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers. Philos. Trans. Roy. Soc. London Ser. A 354 (1996), 575-607. | DOI | MR | Zbl
[3] M. Chugunova, D.E. Pelinovsky. Count of eigenvalues in the generalized eigenvalue problem. J. Math. Phys. 51 (2010), 052901. | DOI | MR | Zbl
[4] B. Deconinck, T. Kapitula. The orbital stability of the cnoidal waves of the Korteweg de Vries equation. Phys. Lett. A 374 (2010), 4018-4022. | DOI | MR | Zbl
[5] F. Dias, G. Iooss. Water-waves as a spatial dynamical system. Handbook of mathematical fluid dynamics, Vol. II, 443-499, North-Holland, Amsterdam, 2003. | DOI | Zbl
[6] C. Godey. A simple criterion for transverse linear instability of nonlinear waves. C. R. Math. Acad. Sci. Paris 354 (2016), 175-179. | DOI | MR | Zbl
[7] C. Godey. Bifurcations locales et instabilités dans des modèles issus de l’optique et de la mécanique des fluides. Ph.D., Université Bourgogne Franche-Comté, 2017.
[8] M.D. Groves. Steady water waves. J. Nonlinear Math. Phys. 11 (2004), 435-460. | DOI | MR | Zbl
[9] M.D. Groves, M. Haragus, S.-M. Sun. Transverse instability of gravity-capillary line solitary water waves. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 421-426. | DOI | MR | Zbl
[10] M.D. Groves, M. Haragus, S.-M. Sun. A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves. Philos. Trans. Roy. Soc. A 360 (2002), 2189-2243. | DOI | MR | Zbl
[11] M.D. Groves, S.-M. Sun, E. Wahlén. Periodic solitons for the elliptic-elliptic focussing Davey-Stewartson equations. C. R. Math. Acad. Sci. Paris 354 (2016), 486-492. | DOI | MR | Zbl
[12] M.D. Groves, S.-M. Sun, E. Wahlén. A dimension-breaking phenomenon for water waves with weak surface tension. Arch. Ration. Mech. Anal. 220 (2016), 747-807. | DOI | MR | Zbl
[13] S. Hakkaev, M. Stanislavova, A. Stefanov. Transverse instability for periodic waves of KP-I and Schrödinger equations. Indiana Univ. Math. J. 61 (2012), 461-492. | DOI | Zbl
[14] M. Haragus. Transverse spectral stability of small periodic traveling waves for the KP equation. Stud. Appl. Math. 126 (2011), 157-185. | DOI | MR | Zbl
[15] M. Haragus. Transverse dynamics of two-dimensional gravity-capillary periodic water waves. J. Dynam. Differential Equations 27 (2015), 683-703. | DOI | MR | Zbl
[16] M. Haragus, T. Kapitula. On the spectra of periodic waves for infinite-dimensional Hamiltonian systems. Phys. D 237 (2008), 2649-2671. | DOI | MR | Zbl
[17] M. Haragus, J. Li, D.E. Pelinovsky. Counting unstable eigenvalues in Hamiltonian spectral problems via commuting operators. Comm. Math. Phys. 354 (2017), 247-268. | DOI | MR | Zbl
[18] M. Haragus, E. Wahlén. Transverse instability of periodic and generalized solitary waves for a fifth-order KP model. J. Differential Equations 262 (2017), 3235-3249. | DOI | MR | Zbl
[19] G. Iooss, K. Kirchgässner. Water waves for small surface tension: an approach via normal form. Proc. Roy. Soc. Edinburgh Sect. A 122 (1992), 267-299. | DOI | MR | Zbl
[20] M.A. Johnson, K. Zumbrun. Transverse instability of periodic traveling waves in the generalized Kadomtsev-Petviashvili equation. SIAM J. Math. Anal. 42 (2010), 2681-2702. | DOI | MR | Zbl
[21] B.B. Kadomtsev, V.I. Petviashvili. On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15 (1970), 539-541. | Zbl
[22] T. Kapitula, P.G. Kevrekidis, B. Sandstede. Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems. Phys. D 195 (2004), 263-282. | DOI | MR | Zbl
[23] K. Kirchgässner. Wave-solutions of reversible systems and applications. J. Differential Equations 45 (1982), 113-127. | DOI | MR | Zbl
[24] K. Kirchgässner. Nonlinearly resonant surface waves and homoclinic bifurcation. Advances in applied mechanics 26 (1988), 135-181. | DOI | Zbl
[25] T. Mizumachi. Stability of line solitons for the KP-II equation in . Mem. Amer. Math. Soc. 238 (2015), no. 1125, 95 pp. | DOI | MR | Zbl
[26] T. Mizumachi, N. Tzvetkov. Stability of the line solitons of the KP-II equation under periodic transverse perturbations. Math. Ann. 352 (2012), 659-690. | DOI | MR | Zbl
[27] F. Rousset, N. Tzvetkov. A simple criterion of transverse linear instability for solitary waves. Math. Res. Lett. 17 (2010), 157-169. | DOI | MR | Zbl
[28] F. Rousset, N. Tzvetkov. Transverse instability of the line solitary water-waves. Invent. Math. 184 (2011), 257-388. | DOI | MR | Zbl
[29] F. Rousset, N. Tzvetkov. Stability and instability of the KdV solitary wave under the KP-I flow. Comm. Math. Phys. 313 (2012), 155-173. | DOI | MR | Zbl
[30] W. Strauss. Steady water waves. Bull. Amer. Math. Soc. 47 (2010), 671-694. | DOI | MR | Zbl
Cited by Sources: