We consider a linear parabolic transmission problem across an interface of codimension one in a bounded domain or on a Riemannian manifold, where the transmission conditions involve an additional parabolic operator on the interface. This system is an idealization of a three-layer model in which the central layer has a small thickness . We prove a Carleman estimate in the neighborhood of the interface for an associated elliptic operator by means of partial estimates in several microlocal regions. In turn, from the Carleman estimate, we obtain a spectral inequality that yields the null-controllability of the parabolic system. These results are uniform with respect to the small parameter .
@article{SLSEDP_2011-2012____A17_0, author = {J\'er\^ome Le Rousseau and Matthieu L\'eautaud and Luc Robbiano}, title = {Controllability of a parabolic system with a diffusive interface}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:17}, pages = {1--20}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2011-2012}, doi = {10.5802/slsedp.13}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.13/} }
TY - JOUR AU - Jérôme Le Rousseau AU - Matthieu Léautaud AU - Luc Robbiano TI - Controllability of a parabolic system with a diffusive interface JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:17 PY - 2011-2012 SP - 1 EP - 20 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.13/ DO - 10.5802/slsedp.13 LA - en ID - SLSEDP_2011-2012____A17_0 ER -
%0 Journal Article %A Jérôme Le Rousseau %A Matthieu Léautaud %A Luc Robbiano %T Controllability of a parabolic system with a diffusive interface %J Séminaire Laurent Schwartz — EDP et applications %Z talk:17 %D 2011-2012 %P 1-20 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.13/ %R 10.5802/slsedp.13 %G en %F SLSEDP_2011-2012____A17_0
Jérôme Le Rousseau; Matthieu Léautaud; Luc Robbiano. Controllability of a parabolic system with a diffusive interface. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Talk no. 17, 20 p. doi : 10.5802/slsedp.13. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.13/
[1] M. Bellassoued, Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization, Asymptotic Anal. 35 (2003), 257–279. | MR | Zbl
[2] A. Benabdallah, Y. Dermenjian, and J. Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem, J. Math. Anal. Appl. 336 (2007), 865–887. | MR | Zbl
[3] —, On the controllability of linear parabolic equations with an arbitrary control location for stratified media, C. R. Acad. Sci. Paris, Ser I. 344 (2007), 357–362. | MR
[4] —, Carleman estimates for stratified media, J. Funct. Anal. 260 (2011), 3645–3677. | MR
[5] A. Benabdallah, P. Gaitan, and J. Le Rousseau, Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, SIAM J. Control Optim. 46 (2007), 1849–1881. | MR | Zbl
[6] A. Doubova, A. Osses, and J.-P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM Control Optim. Calc. Var. 8 (2002), 621–661. | Numdam | MR | Zbl
[7] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963. | MR | Zbl
[8] —, The Analysis of Linear Partial Differential Operators, vol. III, Springer-Verlag, 1985, Second printing 1994.
[9] —, The Analysis of Linear Partial Differential Operators, vol. IV, Springer-Verlag, 1985.
[10] D. Jerison and G. Lebeau, Harmonic analysis and partial differential equations (Chicago, IL, 1996), Chicago Lectures in Mathematics, ch. Nodal sets of sums of eigenfunctions, pp. 223–239, The University of Chicago Press, Chicago, 1999. | MR | Zbl
[11] H. Koch and E. Zuazua, A hybrid system of pde’s arising in multi-structure interaction: coupling of wave equations in and space dimensions, Recent trends in partial differential equations, Contemp. Math. 409 (2006), 55–77. | MR | Zbl
[12] J. Le Rousseau, Carleman estimates and controllability results for the one-dimensional heat equation with coefficients, J. Differential Equations 233 (2007), 417–447. | MR | Zbl
[13] J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var., DOI:10.1051/cocv/2011168 (2011).
[14] J. Le Rousseau and N. Lerner, Carleman estimates for anisotropic elliptic operators with jumps at an interface, Preprint (2011).
[15] J. Le Rousseau and L. Robbiano, Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations, Arch. Rational Mech. Anal. 105 (2010), 953–990. | MR | Zbl
[16] —, Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces, Invent. Math. 183 (2011), 245–336. | MR
[17] M. Léautaud, Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems, J. Funct. Anal. 258 (2010), 2739–2778. | MR | Zbl
[18] G. Lebeau, Équation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud., vol. 19, Kluwer Acad. Publ., Dordrecht, 1996, pp. 73–109. | MR | Zbl
[19] G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur, Comm. Partial Differential Equations 20 (1995), 335–356. | MR | Zbl
[20] —, Stabilisation de l’équation des ondes par le bord, Duke Math. J. 86 (1997), 465–491. | MR
[21] G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal. 141 (1998), 297–329. | MR | Zbl
[22] V. Lescarret and E. Zuazua, Numerical scheme for waves in multi-dimensional media: convergence in asymmetric spaces, Preprint (2010).
[23] L. Miller, On the controllability of anomalous diffusions generated by the fractional laplacian, Mathematics of Control, Signals, and Systems 3 (2006), 260–271. | MR | Zbl
[24] —, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst. Ser. B 14 (2010), no. 4, 1465–1485. | MR | Zbl
[25] G. Tenenbaum and M. Tucsnak, On the null-controllability of diffusion equations, ESAIM, Control Optim. Calc. Var., DOI: 10.1051/cocv/2010035 (2011). | Numdam | MR | Zbl
Cited by Sources: