Dans cet exposé nous présentons quelques résultats de contrôle pour les équations cinétiques. En particulier, nous nous concentrons sur deux modèles importants provenant de la littérature physique : l’équation de Fokker-Planck et le système de Vlasov-Navier-Stokes. Nous présentons les résultats obtenus dans le premier cas, de nature hypoellitique, dans [41], grâce à l’utilisation d’une inégalité spectrale pour le laplacien dans tout l’espace. Dans le cas non-collisionnel, nous présentons les résultats obtenus dans [50, 51] grâce à l’utilisation de la méthode du retour.
@article{SLSEDP_2016-2017____A5_0, author = {Iv\'an Moyano}, title = {Contr\^olabilit\'e de quelques \'equations cin\'etiques collisionnelles et non collisionnelles~: {Fokker-Planck} et {Vlasov-Navier-Stokes}}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:5}, pages = {1--22}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2016-2017}, doi = {10.5802/slsedp.107}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.107/} }
TY - JOUR AU - Iván Moyano TI - Contrôlabilité de quelques équations cinétiques collisionnelles et non collisionnelles : Fokker-Planck et Vlasov-Navier-Stokes JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:5 PY - 2016-2017 SP - 1 EP - 22 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.107/ DO - 10.5802/slsedp.107 LA - fr ID - SLSEDP_2016-2017____A5_0 ER -
%0 Journal Article %A Iván Moyano %T Contrôlabilité de quelques équations cinétiques collisionnelles et non collisionnelles : Fokker-Planck et Vlasov-Navier-Stokes %J Séminaire Laurent Schwartz — EDP et applications %Z talk:5 %D 2016-2017 %P 1-22 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.107/ %R 10.5802/slsedp.107 %G fr %F SLSEDP_2016-2017____A5_0
Iván Moyano. Contrôlabilité de quelques équations cinétiques collisionnelles et non collisionnelles : Fokker-Planck et Vlasov-Navier-Stokes. Séminaire Laurent Schwartz — EDP et applications (2016-2017), Talk no. 5, 22 p. doi : 10.5802/slsedp.107. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.107/
[1] C. Bardos, G. Lebeau and J. Rauch. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. vol. 30 :5, pp. 1024–1065. 1992. | DOI | MR | Zbl
[2] K. Beauchard and E. Zuazua. Some controllability results for the 2D Kolmogorov equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 26, pp. 1793-1815, 2009. | DOI | Numdam | MR | Zbl
[3] K. Beauchard. Null controllability of Kolmogorov-type equations. Mathematics of Control, Signals, and Systems, vol. 26 :1, pp. 145-176, 2014. | DOI | MR | Zbl
[4] K. Beauchard, B. Helffer, R. Henry and L. Robbiano. Degenerate parabolic operators of Kolmogorov type with a geometric control condition. ESAIM Control Opt. Calc. Var. Vol.21. pp. 487–512. 2015. | DOI | MR | Zbl
[5] K. Beauchard and K. Pravda-Starov. Null-controllability of hypoelliptic quadratic differential equations. 2016. | arXiv | DOI | MR | Zbl
[6] A. Benabdallah, Y. Dermenjian, J. Le Rousseau. On the controllability of linear parabolic equations with an arbitrary control location for stratified media. C. R. Acad. Sci. Paris, Ser. I, vol. 344 :6, pp. 357-362, 2007. | DOI | MR | Zbl
[7] F. Boyer, F. Hubert and J. Le Rousseau. Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations. J. Math. Pures Appl. vol. 93, pp. 240-276, 2010. | DOI | MR | Zbl
[8] F. Bouchut. Hypoelliptic regularity in kinetic equations. J. Math. Pures Appl., vol. 81 :11. pp. 1135–1159. 2002. | DOI | MR | Zbl
[9] L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa. Global existence of solutions for the coupled Vlasov and Navier-Stokes equations. Diff. and Int. Eq., vol. 22 :11-12, 2009. | Zbl
[10] L. Boudin, C. Grandmont, A. Lorz and A. Moussa. Modelling and numerics for respiratory aerosols. To appear in Comm. in Comput. Physics. 2015. | DOI | MR | Zbl
[11] V. Cabanillas, S. de Menezes and E. Zuazua. Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms. J. Optim. Theory Appl. vol. 110, pp. 245-264. 2001, | DOI | MR | Zbl
[12] P. Cannarsa, P. Martinez and J. Vancostenoble. Null controllability of the heat equation in unbounded domains by a finite measure control region. ESAIM Control Opt. Calc. Var., vol. 10 :3, pp. 381-408, 2004. | DOI | MR | Zbl
[13] S. Chandrasekharan. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. vol. 15 :1. 1943. | DOI | MR
[14] J.-M. Coron and A. Fursikov. Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary. Russian Journal of Mathematical Physics, vol.4 :4, p. 429-448, 1996. | Zbl
[15] J.-M. Coron. Control and Nonlinearity. Mathematical Surveys and Monographs, vol. 136. American Mathematical Society, 2007. | DOI
[16] L. Desvillettes and C. Villani. On the trend to global equilibrium in spatially inhomogeneous systems. Part I : the linear Fokker-Planck equation. Comm. in Pure and App. Math. vol.54 : 1, pp. 1-42. 2001. | DOI | MR | Zbl
[17] L. Desvillettes, F. Golse and V. Ricci. The mean-field limit for solid particles in a Navier-Stokes flow. J. Statistical Physics. vol. 131 :5, pp. 941-967. 2008. | DOI | MR | Zbl
[18] J. Dolbeault, C. Mouhot and C. Schmeiser. Hypocoercivity for linear kinetic equations conserving mass. Trans. Amer. Math. Soc. 367. pp. 3807-3828. 2015. | DOI | MR | Zbl
[19] L. Escauriaza, G. Seregin and V. Sverák. Backward Uniqueness for Parabolic Operators. Arch. Rational Mech. Anal. vol.169. pp. 147-157. 2003. | DOI | MR | Zbl
[20] A.V. Fursikov and O.Yu. Imanuvilov. Controllability of evolution equations. Lecture Note Series, Seoul National University. Research Institute of Mathematical Global Analysis, vol. 34. Seoul. 1996. | Zbl
[21] I. Gasser, P. E. Jabin and B. Perthame. Regularity and propagation of moments in some nonlinear Vlasov systems. Proc. Roy. Soc. Edinburgh Sect. A, vol. 130, pp.1259-1273. 2000. | DOI | MR | Zbl
[22] Y. Giga and H. Sohr. Abstract estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. Vol.102 :1, pp. 72–94. 1991. | DOI | Zbl
[23] O. Glass. On the controllability of the Vlasov-Poisson system. J. Diff. Eq. vol. 195, pp. 332-379. 2003. | DOI | MR | Zbl
[24] O. Glass. La méthode du retour en contrôlabilité et ses applications en mécanique des fluides (d’après J.-M. Coron et al.) Séminaire Bourbaki 2010/2011. Astérisque, vol. 348, pp. 1-16. 2012. | Zbl
[25] O. Glass and D. Han-Kwan. On the controllability of the Vlasov-Poisson system in the presence of external force fields. J. Diff. Eq. vol. 252. pp. 5453-5491. 2012. | DOI | MR | Zbl
[26] O. Glass and D. Han-Kwan. On the controllability of the relativistic Vlasov-Maxwell system. J. Math. Pures et Appl. vol. 103. pp. 695-740. 2015. | DOI | MR | Zbl
[27] R.T. Glassey. The Cauchy problem in kinetic theory. SIAM. 1996. | DOI | Zbl
[28] F. Golse, C. Imbert, C. Mouhot and A. Vasseur. Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation. 2016. | arXiv | Zbl
[29] M. González-Burgos and L. de Teresa. Some results on controllability for linear and non linear heat equations in unbounded domain. Adv. Diff. Eq. vol. 12 :11, pp.1201-1240, 2007. | Zbl
[30] T. Goudon, P.E. Jabin and A. Vasseur. Hydrodynamic limits for Vlasov-Stokes equations. I. Light particles regime. Indiana Univ. Math. J., vol.53, pp.1495–1513. 2004. | DOI | Zbl
[31] T. Goudon, P.E. Jabin and A. Vasseur. Hydrodynamic limits for Vlasov-Stokes equations. II. Fine particles regime, Indiana Univ. Math. J., vol.53, pp.1517–1536. 2004. | DOI
[32] K. Hamdache. Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J. Industr. Appl. Math. vol. 15. pp. 51-74. 1998. | DOI | MR | Zbl
[33] F. Hérau and F. Nier. Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential. Arch. Rat. Mech. An. vol. 171 :2. pp. 151-218 .2004. | DOI | MR | Zbl
[34] F. Hérau. Short and long time behavior of the Fokker-Planck equation in a confining potential and applications. J. Funct. Anal. Vol. 244 :1. pp. 95-118. 2007. | DOI | MR
[35] L. Hörmander. Hypoelliptic second order differential equations. Acta Mathematica. vol. 119 :1, pp. 147-171, 1967. | DOI | MR | Zbl
[36] P. E Jabin and B. Perthame. Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid. Modelling in applied sciences, a kinetic theory approach. Model. Simul. Sci. Eng. Tech. Birkhauser. Boston. 2000. | DOI | Zbl
[37] P. E. Jabin. Large time concentrations for solutions to kinetic equations with energy dissipation. Comm. Partial Differential Equations. vol.25, pp. 541-557. 2000. | DOI | MR | Zbl
[38] A.N. Kolmogorov, Zufällige Bewegungen, Ann. of Math. vol. 2 :35, pp. 116–117, 1934. | DOI | MR
[39] J. Le Rousseau. Carleman estimates and some application to control theory. Lecture Notes in Mathematics / C.I.M.E. Foundation Subseries J.-M. Coron and P. Cannarsa editors. Springer. 2010.
[40] J. Le Rousseau and G. Lebeau. On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM Control Optim. Calc. Var. vol. 18, pp. 712-747, 2012. | DOI | MR | Zbl
[41] J. Le Rousseau and I. Moyano. Null-controllability of the Kolmogorov equation in the whole phase space. J. Differential Equations. Vol. 260. pp. 3193-3233. 2016. | DOI | MR | Zbl
[42] G. Lebeau and L. Robbiano. Contrôle exact de l’équation de la chaleur. Comm. Partial Differential Equations, vol. 20, pp. 335-356, 1995. | DOI | Zbl
[43] G. Lebeau and E. Zuazua. Null-controllability of a system of linear thermoelasticity. Arch. Rational Mech. Anal., vol. 141, pp. 297-329, 1998. | DOI | MR | Zbl
[44] J.-L. Lions. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués : Perturbations. Masson. 1988. | Zbl
[45] S. Micu and E. Zuazua. On the lack of null controllability of the heat equation on the half-line. Transactions of the A.M.S. vol. 353 :4. pp. 1635-1659. 2000. | Zbl
[46] L. Miller. On the null controllability of the heat equation in unbounded domains. Bulletin des Sciences Mathématiques, vol. 129 :2, pp.175-185. 2005 | DOI | MR | Zbl
[47] L. Miller. Unique continuation estimates estimats for the Laplacian and the heat equation on non-compact manifolds. Math. Res. Lett. vol. 12 :1, pp. 37-47, 2005. | DOI | MR | Zbl
[48] C. Mouhot and C. Villani. Kinetic Theory. In Princeton Companion to Applied Mathematics, N.J. Higham ed. 2015. | DOI
[49] C. Mouhot. Quelques résultats d’hypocoercitivité en théorie cinétique collisionnelle. Séminaire d’EDPs Laurent Schwartz. 2007–2008, Exp. No. XVI. École polytechnique.
[50] I. Moyano. On the controllability of the 2-D Vlasov-Stokes system. Communications in Mathematical Sciences, à paraître. 2016. | DOI | MR | Zbl
[51] I. Moyano. Local null-controllability of the 2-D Vlasov-Navier-Stokes system. Soumis pour publication. 2016. | arXiv
[52] I. Moyano. Contrôlabilité de quelques équations cinétiques, paraboliques dégénérées et de Schrödinger. Manuscrit de Thèse, École polytechnique. tel-01412038v1, 2016.
[53] K.D. Phung. Contrôle et stabilisation d’ondes électromagnétiques. ESAIM : COCV. vol. 5. pp. 87-137. 2000. | DOI | Zbl
[54] S. Ukai and T. Okabe. On classical solutions in the large in time of two-dimensional Vlasov’s equation. Osaka J. Math. vol. 15 :2. pp. 245-261. 1978. | Zbl
Cited by Sources: