We prove that the cubic Szegő equation is well posed on the space of functions of bounded mean oscillation in the Hardy class of the disc, and we establish the Hölder regularity of this flow in the distance. We also show that the Cauchy problem is illposed on the corresponding space.
@article{SLSEDP_2016-2017____A14_0, author = {Patrick G\'erard and Herbert Koch}, title = {The cubic {Szeg\H{o}} flow at low regularity}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:14}, pages = {1--14}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2016-2017}, doi = {10.5802/slsedp.105}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.105/} }
TY - JOUR AU - Patrick Gérard AU - Herbert Koch TI - The cubic Szegő flow at low regularity JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:14 PY - 2016-2017 SP - 1 EP - 14 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.105/ DO - 10.5802/slsedp.105 LA - en ID - SLSEDP_2016-2017____A14_0 ER -
%0 Journal Article %A Patrick Gérard %A Herbert Koch %T The cubic Szegő flow at low regularity %J Séminaire Laurent Schwartz — EDP et applications %Z talk:14 %D 2016-2017 %P 1-14 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.105/ %R 10.5802/slsedp.105 %G en %F SLSEDP_2016-2017____A14_0
Patrick Gérard; Herbert Koch. The cubic Szegő flow at low regularity. Séminaire Laurent Schwartz — EDP et applications (2016-2017), Talk no. 14, 14 p. doi : 10.5802/slsedp.105. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.105/
[1] Bahouri, H., Chemin, J.-Y., Équations de transport relatives à des champs de vecteurs non lipschitziens et mécanique des fluides, Arch. Rational Mech. Anal. 127 (1994) 159-181. | DOI | Zbl
[2] Elgindi, T., Masmoudi, N., ill–posedness for a class of equations arising in hydrodynamics, , to appear. | arXiv | DOI | MR | Zbl
[3] Fefferman, C., Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. | DOI | MR | Zbl
[4] Garnett, J. B., Bounded Analytic Functions, Graduate Texts in Mathematics, Springer, Revised First Edition, 2007. | DOI | Zbl
[5] Gérard, P., Grellier, S., The cubic Szegő equation, Ann. Scient. Éc. Norm. Sup. 43 (2010), 761–810. | DOI | Numdam | Zbl
[6] Gérard, P., Grellier, S., Invariant Tori for the cubic Szegő equation, Invent. Math. 187 (2012), 707–754. | DOI | Zbl
[7] Gérard, P., Grellier, S., An explicit formula for the cubic Szegő equation, Trans. Amer. Math. Soc. 367 (2015), 2979-2995 | DOI | Zbl
[8] Gérard, P., Grellier, S., Effective integrable dynamics for a certain nonlinear wave equation, Anal. PDEs 5 (2012), 1139–1155. | DOI | MR | Zbl
[9] Gérard, P., Grellier, S., The cubic Szegő equation and Hankel operators, , to appear in Astérique, 2017. | arXiv | Zbl
[10] Gérard, P., Guo, Y., Titi, E., On the radius of analyticity of solutions to the cubic Szegő equation, Annales Inst. Henri Poincaré Anal. Non Linéaire 32 (2015), 97–108. | DOI | Numdam | Zbl
[11] Gérard, P., Koch, H., Low regularity solutions of the cubic Szegő equation, paper in preparation.
[12] Hartman, P., On completely continuous Hankel matrices, Proc. Amer. Math. Soc. 9 (1958), 862–866. | DOI | MR | Zbl
[13] John, F., Nirenberg, L., On functions of bounded mean oscillation, Communications on Pure and Applied Mathematics 14 (1961), 415–426. | DOI | MR | Zbl
[14] Levitan, B.M., Zhikov, V.V., Almost periodic functions and differential equations, Cambridge University Press, 1982. | Zbl
[15] Nehari, Z., On bounded bilinear forms, Ann. Math. 65, 153–162 (1957). | DOI | MR | Zbl
[16] Nikolskii, N. K., Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, 92, American Mathematical Society, Providence, RI, 2002.
[17] Peller, V.V., Hankel Operators and their applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. | DOI | MR | Zbl
Cited by Sources: