Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Séminaire Laurent Schwartz — EDP et applications
  • Année 2016-2017
  • Exposé no. 14
  • Suivant
The cubic Szegő flow at low regularity
Patrick Gérard1 ; Herbert Koch2
1 Laboratoire de Mathématiques d’Orsay Univ. Paris-Sud, CNRS, Université Paris–Saclay 91405 Orsay France
2 Mathematisches Institut Universität Bonn D-53115 Bonn Germany
Séminaire Laurent Schwartz — EDP et applications (2016-2017), Exposé no. 14, 14 p.
  • Résumé

We prove that the cubic Szegő equation is well posed on the space BMO + of functions of bounded mean oscillation in the Hardy class of the disc, and we establish the Hölder regularity of this flow in the L 2 distance. We also show that the Cauchy problem is illposed on the corresponding L ∞ space.

  • Détail
  • Export
  • Comment citer
Publié le : 2017-11-19
DOI : 10.5802/slsedp.105
Affiliations des auteurs :
Patrick Gérard 1 ; Herbert Koch 2

1 Laboratoire de Mathématiques d’Orsay Univ. Paris-Sud, CNRS, Université Paris–Saclay 91405 Orsay France
2 Mathematisches Institut Universität Bonn D-53115 Bonn Germany
  • BibTeX
  • RIS
  • EndNote
@article{SLSEDP_2016-2017____A14_0,
     author = {Patrick G\'erard and Herbert Koch},
     title = {The cubic {Szeg\H{o}} flow at low regularity},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:14},
     pages = {1--14},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2016-2017},
     doi = {10.5802/slsedp.105},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.105/}
}
TY  - JOUR
AU  - Patrick Gérard
AU  - Herbert Koch
TI  - The cubic Szegő flow at low regularity
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:14
PY  - 2016-2017
SP  - 1
EP  - 14
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.105/
DO  - 10.5802/slsedp.105
LA  - en
ID  - SLSEDP_2016-2017____A14_0
ER  - 
%0 Journal Article
%A Patrick Gérard
%A Herbert Koch
%T The cubic Szegő flow at low regularity
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:14
%D 2016-2017
%P 1-14
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.105/
%R 10.5802/slsedp.105
%G en
%F SLSEDP_2016-2017____A14_0
Patrick Gérard; Herbert Koch. The cubic Szegő flow at low regularity. Séminaire Laurent Schwartz — EDP et applications (2016-2017), Exposé no. 14, 14 p. doi : 10.5802/slsedp.105. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.105/
  • Bibliographie
  • Cité par

[1] Bahouri, H., Chemin, J.-Y., Équations de transport relatives à des champs de vecteurs non lipschitziens et mécanique des fluides, Arch. Rational Mech. Anal. 127 (1994) 159-181. | DOI | Zbl

[2] Elgindi, T., Masmoudi, N., L ∞ ill–posedness for a class of equations arising in hydrodynamics, , to appear. | arXiv | DOI | MR | Zbl

[3] Fefferman, C., Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. | DOI | MR | Zbl

[4] Garnett, J. B., Bounded Analytic Functions, Graduate Texts in Mathematics, Springer, Revised First Edition, 2007. | DOI | Zbl

[5] Gérard, P., Grellier, S., The cubic Szegő equation, Ann. Scient. Éc. Norm. Sup. 43 (2010), 761–810. | DOI | Numdam | Zbl

[6] Gérard, P., Grellier, S., Invariant Tori for the cubic Szegő equation, Invent. Math. 187 (2012), 707–754. | DOI | Zbl

[7] Gérard, P., Grellier, S., An explicit formula for the cubic Szegő equation, Trans. Amer. Math. Soc. 367 (2015), 2979-2995 | DOI | Zbl

[8] Gérard, P., Grellier, S., Effective integrable dynamics for a certain nonlinear wave equation, Anal. PDEs 5 (2012), 1139–1155. | DOI | MR | Zbl

[9] Gérard, P., Grellier, S., The cubic Szegő equation and Hankel operators, , to appear in Astérique, 2017. | arXiv | Zbl

[10] Gérard, P., Guo, Y., Titi, E., On the radius of analyticity of solutions to the cubic Szegő equation, Annales Inst. Henri Poincaré Anal. Non Linéaire 32 (2015), 97–108. | DOI | Numdam | Zbl

[11] Gérard, P., Koch, H., Low regularity solutions of the cubic Szegő equation, paper in preparation.

[12] Hartman, P., On completely continuous Hankel matrices, Proc. Amer. Math. Soc. 9 (1958), 862–866. | DOI | MR | Zbl

[13] John, F., Nirenberg, L., On functions of bounded mean oscillation, Communications on Pure and Applied Mathematics 14 (1961), 415–426. | DOI | MR | Zbl

[14] Levitan, B.M., Zhikov, V.V., Almost periodic functions and differential equations, Cambridge University Press, 1982. | Zbl

[15] Nehari, Z., On bounded bilinear forms, Ann. Math. 65, 153–162 (1957). | DOI | MR | Zbl

[16] Nikolskii, N. K., Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, 92, American Mathematical Society, Providence, RI, 2002.

[17] Peller, V.V., Hankel Operators and their applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. | DOI | MR | Zbl

Cité par Sources :

Diffusé par : Publié par : Développé par :
  • Nous suivre