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THE CUBIC SZEGŐ FLOW AT LOW REGULARITY

PATRICK GÉRARD AND HERBERT KOCH

Abstract. We prove that the cubic Szegő equation is well posed
on the space BMO+ of functions of bounded mean oscillation in
the Hardy class of the disc, and we establish the Hölder regularity
of this flow in the L2 distance. We also show that the Cauchy
problem is illposed on the corresponding L∞ space.

1. Introduction

This paper is devoted to low regularity solutions of the cubic Szegő
equation on the circle T = R/2πZ,

(1) i∂tu = Π(|u|2u)

where Π : L2(T) → L2
+(T) denotes the orthogonal projector onto the

closed subspace L2
+(T) of L2(T) defined by the cancellation of all neg-

ative Fourier modes,
∀k < 0 , û(k) = 0 .

Recall that L2
+(T) can be identified to the Hardy space H2(D) consisting

of holomorphic functions u on the unit disc such that

sup
r<1

2π∫

0

∣∣u(reix)
∣∣2 dx <∞ .

In the sequel, we shall make use of this identification freely.

Equation (1) was introduced by S. Grellier and the first author in [5],
where a flow on Hs

+(T) := Hs(T) ∩ L2
+(T), s ≥ 1/2, was defined, and

where a Lax pair structure was discovered. In [8], this equation was
identified as the time averaged effective system to the half wave equa-
tion on T. In [6], more precise integrability properties were established,
while in [7] an explicit formula for Hs solutions was derived. Finally,
a general nonlinear Fourier transform was constructed in [9], where

almost periodicity of solutions in H
1/2
+ and growth of higher Sobolev
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norms were proved. Furthermore, analyticity of solutions was studied
in [10].

Since Π is a pseudodifferential operator of order 0, it is natural to ask
about solving Equation (1) for initial data with low regularity. For
instance, the ordinary differential equation

(2) i∂tu = |u|2u
is wellposed on L∞(T), with the explicit formula

u(t, x) = e−it|u(0,x)|2u(0, x) .

The purpose of this paper is to investigate how this property is modified
by the action of the pseudodifferential operator Π. It is well known that
Π is not bounded on L∞(T). The space

BMO+(T) = {Π(b), b ∈ L∞(T)}
was identified by Fefferman [3] as the intersection of L2

+(T) with the
space BMO(T) of functions of bounded mean oscillation introduced by
John and Nirenberg, see [13], [4], as the space of functions f ∈ L1(T)
such that

(3) sup
I

1

|I|

∫

I

|f(x)− 〈f〉I | dx < +∞ , 〈f〉I :=
1

|I|

∫

I

f(x) dx ,

where the supremum above is taken on all intervals I ⊂ T. The space
BMO+ is also the dual of

L1
+(T) = {h ∈ L1(T) : ∀k < 0 , ĥ(k) = 0} .

For every u ∈ BMO+(T), we set

‖u‖BMO = inf{‖b‖L∞ , b ∈ L∞(T),Π(b) = u} = ‖u‖(L1
+)′ .

Our main result is the following.

Theorem 1. For every u0 ∈ BMO+(T), there exists a unique function
u ∈ C1(R, L2

+(T)) ∩ Cw∗(R,BMO+(T)), solution of the initial value
problem

(4) i∂tu = Π(|u|2u) , u(0) = u0 .

Furthermore, ‖u(t)‖BMO = ‖u0‖BMO. Moreover, if u, v are two BMO
solutions of (1) satisfying

‖u(0)‖BMO + ‖v(0)‖BMO ≤M ,

there exists a constant K, depending only on M , such that, for every
t ∈ R,

(5) ‖u(t)− v(t)‖L2 ≤ K ‖u(0)− v(0)‖α(t)

L2 , α(t) := e−K|t| .

Next we come to propagation of Sobolev regularity. In the low regu-
larity case, it is only partially obtained, as a consequence of the stability
estimate (5).
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Corollary 1. Let u be a BMO solution of the cubic Szegő equation, as
given by Theorem 1. Assume u(0) = u0 ∈ Hs for some s > 0. Then, if
s ≥ 1/2, u(t) ∈ Hs(T) for every t ∈ R. In the case 0 < s < 1/2, there
exists K > 0, depending only on a bound of ‖u0‖BMO, such that

∀t ∈ R, u(t) ∈ Hs(t)(T) , s(t) :=
se−K|t|

1− 2s+ 2se−K|t|
.

Remark 1.
• We do not know whether the above exponent s(t) is optimal or not.
If it is optimal, such a loss of regularity could be compared to the
one established by Bahouri and Chemin in Theorem 1.3 of [1] for the
bidimensional incompressible Euler flow with bounded vorticity.
• The above corollary has a local version, which will be established in
the forthcoming paper [11].

In the beginning of this note, we have seen that the ordinary dif-
ferential equation (2) is well posed on L∞(T). In contrast, using the
John–Nirenberg definition (3), it is easy to prove that this equation is
not wellposed on BMO(T). Indeed, though u0(x) = log | sinx| belongs
to BMO(T), one can check that, for every t 6= 0, the function

u(t, x) = (log | sinx|)e−it(log | sinx|)2

does not belong to BMO(T), because its average on [ε, 2ε] is bounded
as ε tends to 0. Somewhat symmetrically, the next result shows that the
Szegő equation is illposed on L∞. We denote by C+(T) = C(T)∩L2

+(T)
the Banach space of continuous functions on the circle with nonnegative
Fourier modes.

Theorem 2. There exists a dense Gδ subset G of C+(T) such that, for
every u0 ∈ G, the solution u of (4) satisfies

∀T > 0, u /∈ L∞([0, T ]× T) .

The present note will give a sketch of the proof of Theorem 1, Corol-
lary 1 and Theorem 2. An extended version with more detailed proofs
and additional results is in preparation [11].

Acknowledgements. We are grateful to Daniel Tataru for suggesting
an improvement leading to Corollary 1.

2. Proof of Theorem 1

The proof of Theorem 1 is based on two arguments. The first one is a
characterization of BMO+(T) which was established by Nehari [16] be-
fore the John–Nirenberg paper. Nehari’s result — see also Theorem 1.1
of Peller [17] — claims that, given u ∈ L2

+(T), the Hankel operator Γû
defined on finitely supported sequence x := (xn)n≥0 by

[Γû(x)]p =
∞∑

n=0

û(p+ n)xn
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extends as a bounded operator on `2(N) if and only if u ∈ BMO+(T),
and that

‖Γû‖`2→`2 = ‖u‖BMO .

As we will recall below, it turns out that the Lax pair discovered in [5]
allows to prove that, if a u is a smooth solution of (1), the operator
norm ‖Γû(t)‖`2→`2 is independent of t. This provides a BMO bound for
the sequence (un) of smooth solutions of (1) which approximates u0 at
t = 0 in BBMO(‖u0‖BMO).

The second argument relies on the John–Nirenberg inequality [13], [4],
which claims that BMO+(T) ⊂ Lp(T) for every p <∞, and that there
exists a universal constant C > 0 such that, for every v ∈ BMO+(T),
for every p ∈ [1,∞),

‖u‖Lp ≤ C p ‖v‖BMO .

This inequality will allow us to prove that the sequence (un) is a Cauchy
sequence in C([−T, T ], L2

+(T)) for every T < ∞, leading to existence
of solution u.

Let us come to the detailed proof of Theorem 1. We first recall the
Lax pair structure of the cubic Szegő equation, as established in [5] and
revisited in [7]. For every u ∈ BMO+(T), define the antilinear Hankel
operator

Hu : L2
+(T)→ L2

+(T)

by the formula

Hu(h) = Π(uh) , h ∈ L2
+(T) .

It is easy to check that Hu is bounded on L2 +( T), and that

Ĥu(h) = Γû

(
ĥ
)
, 〈Hu(h1), h2〉 = 〈Hu(h2), h1〉,

where 〈f, g〉 denotes the usual L2 inner product. In particular,

H2
u ' ΓûΓ

∗
û

is a linear positive selfadjoint operator. From Nehari’s theorem, we
have

(6) ‖Hu‖L2
+→L2

+
= ‖u‖BMO .

Next we claim that, for every a, b, c ∈ L∞+ (T),

(7) HΠ(abc) = TabHc +HaTbc −HaHbHc ,

where, for every m ∈ L∞(T), the Toeplitz operator Tm is defined by

Tm(h) = Π(mh) , h ∈ L2
+(T) .
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Indeed, given h ∈ L2
+(T), we have

HΠ(abc(h) = Π(Π(abc)h) = Π(abch)

= Π(abΠ(ch)) + Π(ab(I − Π)(ch))

= TabHc(h) +Ha

(
b (I − Π)(ch)

)
.

The proof of (7) is completed by observing that

b (I − Π)(ch) = Π
(
b(I − Π)(ch)

)
= Tbc(h)−HbHc(h) .

Now assume that u is a smooth solution to (1). Combining the equation
and identity (7), we have

d

dt
Hu = −iHΠ(|u|2u) = −i(HuT|u|2 + T|u|2Hu −H3

u) = [Bu, Hu] ,

where [B,C] denotes the commutator of the operators B,C,

Bu := −iT|u|2 +
i

2
H2
u ,

and where we have used the antilinearity of Hu in writing

i(HuA+ AHu) = [iA,Hu]

for every linear operator A. Notice that Bu is an antiselfadjoint linear
operator on L2

+(T). Solving the linear ODE

(8)
dU

dt
= BuU , U(0) = I .

in the space of bounded operators on L2
+, we get a one parameter family

U(t) of unitary operators, which satisfies

(9) ∀t ∈ R , Hu(t) = U(t)Hu(0)U(t)∗ .

From (9) and (6), we conclude

(10) ∀t ∈ R , ‖u(t)‖BMO = ‖u0‖BMO .

We now come to the second step of the proof, for which the main point
is the following stability lemma.

Lemma 1. Let u, v be two smooth solutions of (1), satisfying

‖u0‖BMO + ‖v0‖BMO ≤M .

There exists a constant K, depending only on M , such that, for every
t ∈ R,

‖u(t)− v(t)‖L2 ≤ K ‖u0 − v0‖e−K|t|
L2 .

Proof. Recall that we denote by

〈f, g〉 =

2π∫

0

f(eix)g (eix)
dx

2π
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the inner product on L2(T). Set N(t) := ‖u(t)−v(t)‖2
L2 . Assume t ≥ 0

for simplicity, and compute

dN

dt
= 2Im

〈
Π(|u|2u)− Π(|v|2v), u− v

〉
.

Applying the Taylor formula, we have, introducing wθ := θu+ (1− θ)v
for θ ∈ [0, 1],

Π(|u|2u)− Π(|v|2v) =

1∫

0

(2T|wθ|2 +Hw2
θ
)(u− v) dθ .

Since T|wθ|2 is selfadjoint, its contribution to the imaginary part of the
inner product cancels, and we are left with

dN

dt
= 2

1∫

0

Im
〈
Hw2

θ
(u− v), u− v

〉
dθ .

Using identity (7) with a = c = wθ and b = 1, we obtain

dN

dt
= 2

1∫

0

Im 〈(TwθHwθ +HwθTwθ −HwθH1Hwθ) (u− v), u− v〉 dθ

= 4

1∫

0

Im 〈Hwθ(u− v), wθ(u− v)〉 dθ + 2

1∫

0

Im
(
〈wθ, u− v〉2

)
dθ .

From the conservation of the BMO norm (10), we already know that
‖wθ‖BMO ≤M , and thus

‖Hwθ‖L2
+→L2

+
≤M , ‖wθ‖Lp ≤ CM p .

Using Hölder’s inequality, we infer, for large p and for every time t ≥ 0,

|〈Hwθ(u− v), wθ(u− v)〉| ≤M‖u− v‖L2‖wθ|u− v|2/p|u− v|1−2/p‖L2

≤M‖u− v‖L2‖wθ|u− v|2/p‖Lp‖|u− v|1−2/p‖L2p/p−2

≤M(CMp)1+2/p‖u− v‖2−2/p

L2

≤ C̃(M) pN1−1/p .

We now choose, at a given time t ≥ 0,

p = p(t) = 2 + log(M2/N(t)) ≥ 2 ,

since, by the conservation of L2 norms of u and v,

N(t) ≤ (‖u0‖L2 + ‖v0‖L2)2 ≤M2 .

We infer ∣∣∣∣
dN

dt

∣∣∣∣ ≤ K(M)N
(
2 + log(M2/N)

)
.

Solving this differential inequality, we obtain the lemma. �

Patrick Gérard and Herbert Koch

XIV–6



Let us complete the proof of Theorem 1. Let u0 ∈ BMO+(T). Select
a sequence (un0 ) of smooth functions in L2

+ such that

‖un0 − u0‖L2 → 0 , lim sup ‖un0‖BMO ≤ ‖u0‖BMO .

For instance, one can choose

un0 (eix) = u0(rneix) ,

where rn is any sequence of positive numbers smaller than 1 converging
to 1. Denote by un the solution of (1) with initial datum un0 . Then
Lemma 1 implies that (un) is a Cauchy sequence in C([−T, T ], L2

+) for
every T > 0, hence it converges to u ∈ C(R, L2

+). Furthermore,

‖un(t)‖BMO = ‖un0‖BMO,

hence un(t) → u(t) in Lp for every p < ∞, locally uniformly in time.
This allows to pass to the limit in Equation (1), so that u is a solution
of (4), and moreover

‖u(t)‖BMO ≤ lim sup ‖un0‖BMO ≤ ‖u0‖BMO .

It remains to prove uniqueness of such solutions, and the conserva-
tion of the BMO norm. For uniqueness, we observe that the proof
of Lemma 1 can be easily extended to solutions u, v ∈ C(R, L2

+) ∩
Cw∗(R,BMO+(T). Indeed, the only technical point is to extend the
identity

Π(w2h) = wHw(h) +Hw(wh)−HwH1Hw(h)

to the case w, h ∈ BMO+. This can be easily achieved by approx-
imation of w. This leads to estimate (5). Applying this estimate
to u0 = v0, we conclude that there exists only one solution u ∈
C(R, L2

+) ∩ Cw∗(R,BMO+(T)) of (4).

As for the conservation of the BMO norm, it is enough to observe that,
given T ∈ R, that we already have an inequality,

‖u(T )‖BMO ≤ ‖u0‖BMO .

Now, precisely from what we did, the problem

i∂tv = Π(|v|2v) , v(0) = u(T )

has only one solution v ∈ C(R, L2
+) and locally bounded in BMO, and

‖v(t)‖BMO ≤ ‖v(0)‖BMO . Therefore v(t) = u(t+ T ), and applying the
above inequality at t = −T yields ‖u0‖BMO ≤ ‖u(T )‖BMO, whence the
desired equality.

3. Proof of Corollary 1

In the case s ≥ 1/2, Corollary 1 is just a consequence of the unique-
ness of the Cauchy problem in Theorem 1 and of the wellposedness
theory in Hs [5].
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In the case 0 < s < 1/2, a first idea is to combine the stability esti-
mate (5), the invariance of the flow by translation on T, and the fol-
lowing representation of the Hs norm,

‖u‖2
Hs = ‖u‖2

L2 +

1∫

−1

∫

T

|u(x+ h)− u(x)|2
|h|1+2s

dx dh .

However, this provides a result which does not take into account the
conservation of the H1/2 norm. Therefore we prefer to use the following
interpolation argument, which was suggested to us by D. Tataru. Given
λ > 1, one can decompose u0 ∈ Hs as

u0 = u<λ0 + u>λ0 ,

with ‖u<λ0 ‖BMO . 1,

‖u<λ0 ‖H1/2 . λ
1
2
−s , ‖u>λ0 ‖L2 . λ−s .

Then, by the conservation of the H1/2 norm, u<λ := Z(u<λ0 ) satisfies

‖u<λ(t)‖H1/2 . λ
1
2
−s ,

while the stability estimate (5) yields, with α(t) = e−K|t| and K =
K(‖u0‖BMO),

‖u(t)− u<λ(t)‖L2 . ‖u0 − u<λ0 ‖α(t) . λ−sα(t) .

Therefore the the dyadic component ∆ku(t) of u(t) can be estimated,
for every λ > 0, as

‖∆ku(t)‖L2 . 2−k/2λ
1
2
−s + λ−sα(t) .

Choosing λ = λ(k, t) optimally, we obtain

‖∆ku(t)‖L2 . 2−ksα(t)/(1−2s+2sα(t)) ,

and therefore u(t) ∈ Hs(t) with

s(t) =
se−K̃|t|

1− 2s+ 2se−K̃|t|

for every K̃ > K. This completes the proof.

4. Proof of Theorem 2

The arguments for Theorem 2 are an adaptation of a method de-
veloped by Elgindi and Masmoudi in [2], which leads to ill–posedness
for the incompressible Euler equation at the C1 regularity. The crucial
step is the following lemma.

Lemma 2. Let u0 ∈ C+(T). There exists a sequence (un) of smooth
solutions to the (1) such that

‖un(0)− u0‖L∞ → 0 ,
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and a sequence of times Tn > 0 tending to 0 such that

sup
t∈[0,Tn]

‖un(t)‖L∞ →∞ .

Let us show how Lemma 2 implies Theorem 2. For every u0 ∈
BMO+(T) and every t ∈ R, we denote by Z(t)(u0) the value u(t) at
time t of the solution u := Z(u0) of (4) provided by Theorem 1. For
every integer p ≥ 1, denote by Ωp the subset of those u0 ∈ C+(T)) such
that, for some rp ∈ ]0, 1[, we have

sup
t∈[0,1/p]

sup
x∈T

∣∣Z(t)(u0)
(
rpe

ix
)∣∣ > p .

We claim that Ωp is an open subset of C+(T). Indeed, for every r < 1,
the map

u ∈ L2
+(T)→ ur ∈ L∞+ (T) , ur(e

ix) := u(reix)

is continuous in view of the Cauchy integral formula, and the mapping

u0 ∈ C+(T) 7→ Z(u0) ∈ C([0, 1], L2
+(T))

is continuous in view of Theorem 1.

Next we claim that Ωp is dense in C+(T). Given u0 ∈ C+(T), we apply
Lemma 2. The sequence provided by this lemma converges to u0 in
C+(T). Furthermore, for n big enough, Tn < 1/p and

sup
t∈[0,Tn]

‖un(t)‖L∞ > p .

Since, for every f ∈ L∞+ (T),

‖f‖L∞ = sup
r<1

sup
x∈T

∣∣f(reix)
∣∣ ,

we conclude that un belongs to Ωp.

Introduce

G =
⋂

p≥1

Ωp .

Since C+(T) is a Banach space, the Baire theorem shows that G is a
dense Gδ subset of C+(T). Furthermore, if u0 ∈ G, we have, for every
T > 0 and every p ≥ T−1,

sup
t∈[0,T ]

sup
r∈[0,1[

sup
x∈T

∣∣Z(t)u0(reix)
∣∣ > p ,

hence Z(u0) /∈ L∞([0, T ]× T).
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4.1. Proof of Lemma 2. We shall make use of a Banach algebra B
of functions on the torus, invariant by Π, included into L∞, such that

(11) ‖uv‖B ≤ C(‖u‖L∞‖v‖B + ‖u‖B‖v‖L∞) ,

and which, roughly speaking, has the same scaling properties as L∞.
An example is provided by the Besov space

B = B
1/2
2,1 = {u ∈ L2(T) : ‖u‖B = |û(0)|+

∞∑

k=0

2k/2‖∆ku‖L2 <∞} ,

where ∆ku denotes the usual dyadic component of u. Indeed, Π(B) ⊂
B from the definition, the inclusion B ⊂ L∞ is a consequence of the
standard inequality

‖∆ku‖L∞ . 2k/2‖∆ku‖L2 ,

and the tame estimate (11) follows from paralinearising the product
uv. The subspace B+ = Π(B) of L∞+ can also be characterised by the
condition

(12) [u]B+ :=

1∫

0

1√
1− r

( 2π∫

0

∣∣u′
(
reix

)∣∣2 dx
)1/2

dr <∞ ,

where u′ is the holomorphic derivative of u, the norm |û(0)| + [u]B+

being equivalent to ‖u‖B on B+.

We now fix α ∈ ]0,∞[ and introduce, for every ρ ∈ ]0, 1[,

fρ(z) = (1− ρz)iα = eiα log(1−ρz), |z| ≤ 1 ,

with log(1− ρz) ∈ R + i[−π
2
, π

2
].

Lemma 3. The following estimates hold as ρ tends to 1,

‖fρ‖L∞ ≤ C , ‖fρ‖B ≤ C log
1

1− ρ ,

and for every trigonometric polynomial g = g(z) ∈ L2
+ with g(1) 6= 0,

‖Π(|fρ|2g)‖L∞ ≥ c(g) log
1

1− ρ ,

for some c(g) > 0.

Proof. Notice that, for x ∈ T,

fρ(e
ix) = ei

α
2

log(1+ρ2−2ρ cosx)e−αAρ(x) , Aρ(x) = arctan

(
ρ sinx

1− ρ cosx

)
.

In particular,

‖fρ‖L∞ ≤ eαπ/2 .

On the other hand,

f ′ρ(z) = −iαρ(1− ρz)iα−1 ,
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so that
2π∫

0

∣∣f ′ρ
(
reix

)∣∣2 dx . 1

1− ρr ,

and

[fρ]B+ .
1∫

0

dr√
(1− r)(1− ρr)

. log
1

1− ρ .

It remains to prove the last statement. Let g = g(z) ∈ L2
+ be a

trigonometric polynomial. We compute

Π(|fρ|2g)(ρ) =
1

2π

π∫

−π

|fρ(eix)|2g(eix)

1− ρe−ix
dx

=
1

2π

π∫

−π

e−2αAρ(x)g(eix)

1− ρe−ix
dx .

The above integral is uniformly bounded as ρ tends to 1, except for the
contribution of a neighborhood of x = 0. Symmetrizing the integration
domain, we get

Π(|fρ|2g)(ρ) =

π∫

0

hρ(x) + hρ(−x)

(1− ρ)2 + 2ρ(1− cosx)

dx

2π
,

with

h(x) := (1− ρeix)e−2αAρ(x)g(eix) .

Expanding eix near x = 0, we obtain,

Π(|fρ|2g)(ρ) == O(1) +
iρ

2π
g(1)

π∫

0

x
(
e2αAρ(x) − e−2αAρ(x)

)

(1− ρ)2 + 2ρ(1− cosx)
dx .

Notice that function Aρ is nonnegative on [0, π] and increasing from

x = 0 to x = arccos ρ ∼
√

2(1− ρ). In particular, the integrand of the
above integral is nonnegative, and we may restrict x to the domain of
integration [1− ρ,√1− ρ], on which Aρ(x) & π

4
, so that

π∫

0

x
(
e2αAρ(x) − e−2αAρ(x)

)

(1− ρ)2 + 2ρ(1− cosx)
dx ≥ cα

√
1−ρ∫

1−ρ

x

(1− ρ)2 + x2
dx

≥ c̃α log
1

1− ρ .

This completes the proof of Lemma 3.
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Next, we consider, for a given trigonometric polynomial g = g(z) ∈ L2
+

such that g(1) 6= 0, the family of data

uρ,ε0 = g + εfρ .

Applying Lemma 3, we observe that

‖uρ,ε0 − g‖L∞ = O(ε) , ‖uρ,ε0 ‖B . O(1) + ε log
1

1− ρ .

Furthermore,

Π(|uρ,ε0 |2uρ,ε0 ) = Π(|g|2g) + ε[2Π(|g|2fρ) + Π(g2fρ)] +

+ ε2[2Π(|fρ|2g) + Π(f 2
ρg)] + ε3Π(|fρ|2fρ) .

Notice that, if h ∈ L∞+ ,

Π(e−ixh) = e−ix(h− h(0))

belongs to L∞+ with ‖Π(e−ixh)‖L∞ ≤ 2‖h‖L∞ . Since Π(|g|2fρ) is a finite
linear combination of terms of the form einxfρ and Π(e−inxfρ) with |n|
not greater than the degree of g, we conclude that Π(|g|2fρ) is bounded

in L∞+ . Similarly, Π(f 2
ρg) is bounded in L∞+ , and so is Π(g2fρ), since

it is a finite trigonometric polynomial of degree not greater than twice
the degree of g, with coefficients estimated by the supremum of Fourier
coefficients of fρ. Finally, applying (11) and Lemma 3,

‖Π(|fρ|2fρ)‖L∞ . ‖Π(|fρ|2fρ)‖B . ‖fρ‖B . log
1

1− ρ .

This leads to

‖Π(|uρ,ε0 |2uρ,ε0 )‖L∞ ≥ ε2(c(g)− εC(g)) log
1

1− ρ −O(1) .

Choosing ε small enough, we infer

(13) ‖Π(|uρ,ε0 |2uρ,ε0 )‖L∞ ≥ ε2c̃(g) log
1

1− ρ −O(1) , c̃(g) > 0 .

Next we consider uρ,ε = Z(uρ,ε0 ). We claim that, for every positive time
T � 1, there exists ρ = ρ(ε, T ) such that, for ε� 1,

lim sup
ε→0

sup
t∈[0,T ]

‖uρ(ε,T ),ε‖L∞ = +∞ .

Indeed, assume by contradiction that, for some T > 0 and for some M ,
we have, for some ε0 > 0,

sup
ε<ε0

sup
ρ<1

sup
t∈[0,T ]

‖uρ,ε‖L∞ ≤M .

Then, from the equation

uρ,ε(t) = uρ,ε0 − i
t∫

0

Π(|uρ,ε(s)|2uρ,ε(s)) ds
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and using (11), we have, if t ∈ [0, T ],

sup
s∈[0,t]

‖uρ,ε(s)‖B ≤ ‖uρ,ε0 ‖B + CM2t sup
s∈[0,t]

‖uρ,ε(s)‖B,

so that, if t ≤ T̃ ∗ := min(T, (2CM2)−1),

(14) sup
s∈[0,t]

‖uρ,ε(s)‖B ≤ 2‖uρ,ε0 ‖B . O(1) + ε log
1

1− ρ .

Then we write the Taylor formula at second order in t,

uρ,ε(t) = uρ,ε0 − itΠ(|uρ,ε0 |2uρ,ε0 ) +
t∫

0

(t− s)
[
−2(T|uρ,ε(s)|2)

2 +Huρ,ε(s)2T|uρ,ε(s)|2
]
uρ,ε(s) ds ,

so that, using again (11) and (14), for every t ∈ [0, T ∗],

‖uρ,ε(t)− uρ,ε0 + itΠ(|uρ,ε0 |2uρ,ε0 )‖B ≤ K(M)εt2 log
1

1− ρ +O(1) .

Using (13), we infer

∀t ∈ [0, T ∗] , ‖uρ,ε(t)‖L∞ ≥ tε log
1

1− ρ(c̃(g)ε− tK(M))−O(1) .

Choosing t = T ∗∗ := min(T ∗, εc̃(g)/2K(M)) and ρ = ρ(ε, T ) close
enough to 1, we obtain a contradiction.

Summing up, we have proved that, for every trigonometric polynomial
g = g(z) ∈ L2

+ such that g(1) 6= 0, there exists a sequence of data un0
converging to g in C+(T), and a sequence of positive times Tn converg-
ing to 0, such that

sup
t∈[0,Tn]

‖Z(t)un0‖L∞ →∞ .

Since any u0 ∈ C+(T) can be approximated by a sequence of trigono-
metrical polynomials g ∈ L2

+ with g(1) 6= 0, this completes the proof
of Lemma 2. �
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