Dans cet exposé, je présente plusieurs modèles quantiques non linéaires permettant de décrire certaines étoiles. Je m’intéresse tout particulièrement à l’effondrement gravitationnel des étoiles trop lourdes, un phénomène modélisé par des solutions qui explosent en temps fini. Je montre l’existence de telles solutions et je décris plusieurs de leurs propriétés au temps d’explosion.
@article{SLSEDP_2011-2012____A13_0, author = {Mathieu Lewin}, title = {Sur l{\textquoteright}effondrement dynamique des \'etoiles quantiques pseudo-relativistes}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:13}, pages = {1--20}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2011-2012}, doi = {10.5802/slsedp.10}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.10/} }
TY - JOUR AU - Mathieu Lewin TI - Sur l’effondrement dynamique des étoiles quantiques pseudo-relativistes JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:13 PY - 2011-2012 SP - 1 EP - 20 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.10/ DO - 10.5802/slsedp.10 LA - fr ID - SLSEDP_2011-2012____A13_0 ER -
%0 Journal Article %A Mathieu Lewin %T Sur l’effondrement dynamique des étoiles quantiques pseudo-relativistes %J Séminaire Laurent Schwartz — EDP et applications %Z talk:13 %D 2011-2012 %P 1-20 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.10/ %R 10.5802/slsedp.10 %G fr %F SLSEDP_2011-2012____A13_0
Mathieu Lewin. Sur l’effondrement dynamique des étoiles quantiques pseudo-relativistes. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Talk no. 13, 20 p. doi : 10.5802/slsedp.10. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.10/
[1] V. Bach, E. H. Lieb, and J. P. Solovej, Generalized Hartree-Fock theory and the Hubbard model, J. Statist. Phys., 76 (1994), pp. 3–89. | MR | Zbl
[2] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev., 108 (1957), pp. 1175–1204. | MR | Zbl
[3] N. N. Bogoliubov, On a New Method in the Theory of Superconductivity, J. Exp. Theor. Phys., 34 (1958), p. 58. | Zbl
[4] A.-P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A., 53 (1965), pp. 1092–1099. | MR | Zbl
[5] É. Cancès, C. Le Bris, and Y. Maday, Méthodes mathématiques en chimie quantique. Une introduction, vol. 53 of Collection Mathématiques et Applications, Springer, 2006. | MR | Zbl
[6] T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), pp. 549–561. | MR | Zbl
[7] J. M. Chadam, The time-dependent Hartree-Fock equations with Coulomb two-body interaction, Commun. Math. Phys., 46 (1976), pp. 99–104. | MR | Zbl
[8] J. M. Chadam and R. T. Glassey, Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Math. Phys., 16 (1975), pp. 1122–1130. | MR | Zbl
[9] S. Chandrasekhar, The density of white dwarf stars, Philos. Mag., 11 (1931), pp. 592–596. | Zbl
[10] Idem, The maximum mass of ideal white dwarfs, Astrophys. J., 74 (1931), pp. 81–82. | Zbl
[11] R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), pp. 315–331. | MR | Zbl
[12] A. Elgart and B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60 (2007), pp. 500–545. | MR | Zbl
[13] M. J. Esteban, M. Lewin, and É. Séré, Variational methods in relativistic quantum mechanics, Bull. Amer. Math. Soc. (N.S.), 45 (2008), pp. 535–593. | MR
[14] R. L. Frank and E. Lenzmann, On ground states for the -critical boson star equation, ArXiv e-prints, (2010).
[15] J. Fröhlich, B. L. G. Jonsson, and E. Lenzmann, Effective dynamics for boson stars, Nonlinearity, 20 (2007), pp. 1031–1075. | MR | Zbl
[16] J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), pp. 1691–1705. | MR | Zbl
[17] Idem, Dynamical collapse of white dwarfs in Hartree- and Hartree-Fock theory, Commun. Math. Phys., 274 (2007), pp. 737–750. | MR | Zbl
[18] C. Hainzl, E. Lenzmann, M. Lewin, and B. Schlein, On blowup for time-dependent generalized Hartree-Fock equations, Ann. Henri Poincaré, 11 (2010), pp. 1023–1052. | MR | Zbl
[19] C. Hainzl and B. Schlein, Stellar collapse in the time dependent Hartree-Fock approximation, Commun. Math. Phys., 287 (2009), pp. 705–717. | MR | Zbl
[20] I. W. Herbst, Spectral theory of the operator , Commun. Math. Phys., 53 (1977), pp. 285–294. | MR | Zbl
[21] T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not., (2005), pp. 2815–2828. | MR | Zbl
[22] T. Kato, Perturbation theory for linear operators, Springer, second ed., 1995. | MR | Zbl
[23] E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), pp. 43–64. | MR | Zbl
[24] E. Lenzmann and M. Lewin, Minimizers for the Hartree-Fock-Bogoliubov theory of neutron stars and white dwarfs, Duke Math. J., 152 (2010), pp. 257–315. | MR | Zbl
[25] E. Lenzmann and M. Lewin, On singularity formation for the -critical Boson star equation. 2011. | Zbl
[26] E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Commun. Math. Phys., 53 (1977), pp. 185–194. | MR
[27] E. H. Lieb and W. E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. Physics, 155 (1984), pp. 494–512. | MR
[28] E. H. Lieb and H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys., 112 (1987), pp. 147–174. | MR | Zbl
[29] J.-L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.), 2 (50) (1958), pp. 419–432. | MR | Zbl
[30] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 109–149. | Numdam | MR | Zbl
[31] Idem, The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 223–283. | Numdam | MR | Zbl
[32] Idem, Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math. Phys., 109 (1987), pp. 33–97. | MR | Zbl
[33] F. Merle and P. Raphael, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys., 253 (2005), pp. 675–704. | MR | Zbl
[34] F. Merle and Y. Tsutsumi, concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84 (1990), pp. 205–214. | MR | Zbl
[35] A. Michelangeli and B. Schlein, Dynamical Collapse of Boson Stars, ArXiv e-prints, (2010). | MR
[36] H. Nawa, “Mass concentration” phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity. II, Kodai Math. J., 13 (1990), pp. 333–348. | MR | Zbl
[37] M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier analysis, self-adjointness, Academic Press, New York, 1975. | MR | Zbl
[38] P. Ring and P. Schuck, The nuclear many-body problem, vol. Texts and Monographs in Physics, Springer Verlag, New York, 1980. | MR
[39] E. M. Stein, Harmonic analysis : real-variable methods, orthogonality, and oscillatory integrals, vol. 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy. | MR | Zbl
[40] W. Thirring, Bosonic black holes, Physics Letters B, 127 (1983), pp. 27 – 29.
[41] M. I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations, 11 (1986), pp. 545–565. | MR | Zbl
Cited by Sources: